• Title/Summary/Keyword: Mean Flow Field

Search Result 474, Processing Time 0.033 seconds

Stress and fatigue analysis of major components under dynamic loads for a four-row tractor-mounted radish collector

  • Khine Myat Swe;Md Nasim Reza;Milon Chowdhury;Mohammod Ali;Sumaiya Islam;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.269-284
    • /
    • 2022
  • The development of radish collectors has the potential to increase radish yields while decreasing the time and dependence on human labor in a variety of field activities. Stress and fatigue analyses are essential to ensure the optimal design and machine life of any agricultural machinery. The objectives of this research were to analyze the stress and fatigue of major components of a tractor-mounted radish collector under dynamic load conditions in an effort to increase the design dependability and dimensions of the materials. An experiment was conducted to measure the shaft torque of stem-cutting and transferring conveyor motors using rotary torque sensors at different tractor ground speeds with and without a load. The Smith-Watson-Topper mean stress equation and the rain-flow counting technique were utilized to determine the required shear stress with the distribution of the fatigue life cycle. The severity of the operation was assessed using Miner's theory. All running conditions produced more than 107 of high cycle fatigue strength. Furthermore, the highest severity levels for motor shafts used for stem cutting and transferring and for transportation joints and cutting blades were 2.20, 4.24, 2.07, and 1.07, and 1.97, 3.81, 1.73, and 1.07, respectively, with and without a load condition, except for 5.24 for a winch motor shaft under a load. The stress and fatigue analysis presented in this study can aid in the selection of the most appropriate design parameters and material sizes for the successful construction of a tractor-mounted radish collector, which is currently under development.

Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.559-575
    • /
    • 2016
  • In order to investigate the influence of different blade positions on aerodynamic load and wind loads and load-effects of large scale wind turbine tower under the halt state, we take a certain 3 MW large scale horizontal axis three-blade wind turbine as the example for analysis. First of all, numerical simulation was conducted for wind turbine flow field and aerodynamic characteristics under different halt states (8 calculating conditions in total) based on LES (large eddy simulation) method. The influence of different halt states on the average and fluctuating wind pressure coefficients of turbine tower surface, total lift force and resistance coefficient, circular flow and wake flow characteristics was compared and analysed. Then on this basis, the time-domain analysis of wind loads and load-effects was performed for the wind turbine tower structure under different halt states by making use of the finite element method. The main conclusions of this paper are as follows: The halt positions of wind blade could have a big impact on tower circular flow and aerodynamic distribution, in which Condition 5 is the most unfavourable while Condition 1 is the most beneficial condition. The wind loads and load-effects of disturbed region of tower is obviously affected by different halt positions of wind blades, especially the large fluctuating displacement mean square deviation at both windward and leeward sides, among which the maximum response occurs in $350^{\circ}$ to the tower top under Condition 8; the maximum bending moment of tower bottom occurs in $330^{\circ}$ under Condition 2. The extreme displacement of blade top all exceeds 2.5 m under Condition 5, and the maximum value of windward displacement response for the tip of Blade 3 under Condition 8 could reach 3.35 m. All these results indicate that the influence of halt positions of different blades should be taken into consideration carefully when making wind-resistance design for large scale wind turbine tower.

Development of an AIDA(Automatic Incident Detection Algorithm) for Uninterrupted Flow By Diminishing the Random Noise Effect of Traffic Detector Variables (검측 변수내 Random Noise 제거를 통한 연속류 돌발상황 자동감지알고리즘 개발)

  • Choi, Jong-Tae;Shin, Chi-Hyun;Kang, Seung-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.29-38
    • /
    • 2012
  • The data quality and measurements along consecutive detector stations can vary much even in the same traffic conditions due to variety in detector types, calibration and maintenance effort, field operation periods, minor geometric changes of roads and so on. These faulty situations often create 10% or more of inherent difference in important traffic measurements between two stations even under stable low flow condition. Low detection rates(DR) and high false alarm rates(FAR) therefore sets in among many popular Automatic Incident Detection Algorithms(AIDA). This research is two-folded and aims mainly to develop a new AIDA for uninterrupted flow. For this purpose, a technique which utilizes a Simple Arithmetic Operation(SAO) of traffic variables is introduced. This SAO technique is designed to address the inherent discrepancy of detector data observed successive stations, and to overcome the degradation of AIDA performance. It was found that this new algorithm improves DR as much as 95 percent and above. And mean time to detection(MTTD) is found to be 1 minutes or less. When it comes to FAR, this new approach compared to existing AIDAs reduces FAR up to 31.0 percent. And capability in persistency check of on-going incidents was found excellent as well.

Flow Safety Assessment by CFD Analysis in One-Touch Insertion Type Pipe Joint for Refrigerant (CFD 해석을 이용한 냉매용 원터치 삽입식 파이프 조인트의 유동 안전성 평가)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.550-559
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the safety by flow analysis of the 6.35 inch socket model, which are integrated insert type connectors developed by a company, using CFD analysis technique. For CDF analysis, RAN model and LES model are used. Result: As results of the analysis, amplitude of the pressure fluctuation acting on the wall of the piping system is formed at a level of 3,780 Pa or less, which is a very small level of pressure compared with the operating pressure or design stress of the refrigerant piping. Conclusion: These results mean that the effect of vibration caused by turbulence on the structural safety of the pipe is negligible.

Development and Application of Diffusion Wave-based Distributed Runoff Model (확산파에 기초한 분포형 유출모형의 개발 및 적용)

  • Lee, Min-Ho;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.553-563
    • /
    • 2011
  • According to the improvement of computer's performance, the development of Geographic Information System (GIS), and the activation of offering information, a distributed model for analyzing runoff has been studied a lot in recently years. The distribution model is a theoretical and physical model computing runoff as making target basin subdivided parted. In the distributed model developed by this study, the volume of runoff at the surface flow is calculated on the basis of the parameter determined by landcover data and a two-dimensional diffusion wave equation. Most of existing runoff models compute velocity and discharge of flow by applying Manning-Strickler's mean velocity equation and Manning's roughness coefficient. Manning's roughness coefficient is not matched with dimension and ambiguous at computation; Nevertheless, it is widely used in because of its convenience for use. In order to improve those problems, this study developed the runoff model by applying not only Manning-Strickler's equation but also Chezy's mean velocity equation. Furthermore, this study introduced a power law of exponential friction factor expressed by the function of roughness height. The distributed model developed in this study is applied to 6 events of fan-shape basin, oblong shape test basin and Anseongcheon basin as real field conditions. As a result the model is found to be excellent in comparison with the exiting runoff models using for practical engineering application.

Clinical Significance of S-Phase Fraction in Small Cell Lung Cancer (소세포 폐암에서 S-Phase Fraction의 임상적 의의)

  • Kim, Hui-Jung;Jung, Byung-Hak;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.4
    • /
    • pp.363-371
    • /
    • 1994
  • Background: DNA content analysis of human solid tumor is now widely performed by flow cytometric study. One of the most interesting and potentially important observation in this field is that proliferative activity(S-Phase fraction of cell cycle) may profoundly affect the prognosis. Method: S-Phase fraction(SPF) have been measured by flow cytometric method using tumor cells isolated from paraffin embedded tissue. To evaluate the prognostic significance, SPF of small lung cancer cell was assessed in 42 patients who died after receiving anticancer chemotherapy. Results: 1) Mean survival time of patients with small cell lung cancer was 190(${\pm}156$) days. Survival time were shortened, when TNM stage and PS scale were advanced. 2) Mean value of SPF of patients with small cell lung cancer was 27.4(${\pm}8.5$)%. SPF had nothing to do with advance of TNM stage and PS scale. 3) In each identical TNM stage, there were not statistic significance between SPF and survival times. 4) There was a tendency like that higher SPF, better chemotherapeutic response. Conclusion: We could not find statistic significance between SPF and survival times, but SPF was a good predictive factor for chemotherapeutic response.

  • PDF

Mobility of Water and Solute Intluenced by PHYSICAL PROCESSES in field Soils (포장에서 물리적 진행과정에 의해 영향을 받은 물질과 수분의 이동성)

  • Doug Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.73-81
    • /
    • 1996
  • The self-diffusion coefficients of chloride and tritiated water ranged from 4.8 $\times$ 10-7 to 7.2 $\times$ 10-7 cm2/sec and 5.5 $\times$ 10-5 to 1.6 $\times$ 10-4 cm2/sec for three different depths of soil constituents at about 50% water content by volume, respectively Mobility of solute and water was conducted under steady-state flow conditions in a field soil consisting of 70 cm of clay to silty clay over a medium sand. A steady-state water flow conditions was maintained by applying irrigation water at a constant flux of 2cm per day. The water labeled with chloride and tritium was leached into the plot during the steady-state condition for 87 days. The positions of tritium and chloride as a function of soil depth and the time was measured by extracting samples of the soil solution with suction probes. Extremes in solute displacement occurred at equal and different depths within the plot. An analysis of these measurements indicated the observations of the pore-water velocity and the apparent diffusion coefficient were log normally disturbed. Twenty-four soil suction probes, used to identify the rate at which a solute was displaced in the soil, will yield an estimate of the mean pore-water velocity of this soils within a range of approximately 5% of its true value providing the effects of potential solute-soil interaction are taken into account.

  • PDF

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Transport Concept (시간영역 광전자파 분석기 (Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 오염물질 운송개념)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.713-724
    • /
    • 1996
  • The time-series resident solute concentrations, monitored at two field plots using the automated 144-channel TDR system by Kim (this issue), are used to investigate the dominant transport mechanism at field scale. Two models, based on contradictory assumptions for describing the solute transport in the vadose zone, are fitted to the measured mean breakthrough curves (BTCs): the deterministic one-dimensional convection-dispersion model (CDE) and the stochastic-convective lognormal transfer function model (CLT). In addition, moment analysis has been performed using the probability density functions (pdfs) of the travel time of resident concentration. Results of moment analysis have shown that the first and second time moments of resident pdf are larger than those of flux pdf. Based on the time moments, expressed in function of model parameters, variance and dispersion of resident solute travel times are derived. The relationship between variance or dispersion of solute travel time and depth has been found to be identical for both the time-series flux and resident concentrations. Based on these relationships, the two models have been tested. However, due to the significant variations of transport properties across depth, the test has led to unreliable results. Consequently, the model performance has been evaluated based on predictability of the time-series resident BTCs at other depths after calibration at the first depth. The evaluation of model predictability has resulted in a clear conclusion that for both experimental sites the CLT model gives more accurate prediction than the CDE model. This suggests that solute transport at natural field soils is more likely governed by a stream tube model concept with correlated flow than a complete mixing model. Poor prediction of CDE model is attributed to the underestimation of solute spreading and thus resulting in an overprediction of peak concentration.

  • PDF

Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF) (고위도 하부 열권 바람의 소용돌이도와 발산 분석: 행성간 자기장(IMF)에 대한 의존도)

  • Kwak, Young-Sil;Lee, Jae-Jin;Ahn, Byung-Ho;Hwang, Jung-A;Kim, Khan-Hyuk;Cho, Kyung-Seok
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.405-414
    • /
    • 2008
  • To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM) is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ulti-mately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive $B_y$ shows positive and negative, respectively, at higher magnetic latitudes than $-70^{\circ}$. For negative $B_z$, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive $B_z$ have opposite sign. Negative IMF $B_z$ has a stronger effect on the vorticity than does positive $B_z$.

Prediction of Mean Water Level Rise Behind Low-Crested Structures and Outflow Velocity from Openings by Using a Hybrid Method Based on Two Dimensional Model Test and Hydrodynamic Numerical Modeling (단면수리모형 및 해수유동모델링 결합기법에 의한 저마루 구조물 배후의 평균수위 상승 및 개구부 유출유속 예측)

  • Lee, Dal Soo;Lee, Ki-Jae;Yoon, Jae Seon;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.410-418
    • /
    • 2017
  • The stability of low-crested structure (LCS) and overtopping discharge over a seawall behind the LCS are influenced by the water level behind the structure. Hence, the experimental results can be distorted unless the increase of water level is known when two-dimensional experiment is carried out. In order to estimate increase of the mean water level behind the low-crested structure, this study applied a hybrid technique that combined results of two-dimensional model test and hydrodynamic numerical modeling based on the relationship between the water level and discharge. By using this technique, the mean water level increase and flow field can be obtained almost at the same time, which resolved the above problem considerably. In addition, this method can provide an approximate information about the outflow velocity from the openings of the structure, which is helpful for selecting appropriate planar configuration of the low-crested structure.