• Title/Summary/Keyword: Mean Film Temperature

Search Result 96, Processing Time 0.033 seconds

Thermal Characteristics and Simulation Model Development for Greenhouse Heating System with Heat Pump (열펌프에 의한 그린하우스 난방시스템의 열특성과 시뮬레이션 모델개발)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.155-162
    • /
    • 2001
  • The greenhouse heating system with heat pump was built for development of simulation model and validation. The computer simulation model for the system to predict temperature of air and soil and moisture content of soil in the greenhouse were developed, and its validity was justified by actual data. From the analysis of experimentally measured data and the simulation output, following results were obtained. 1. The expected values of inside air temperature for the heating system with heat pump were very much close to the experimental values. 2. In the heating system with heat pump, the expected values of day time surface temperature of soil by computer simulation were very much similar to the measured values, but those of night time were higher than the measured value by at most 2.0$\^{C}$. 3. The simulation model predicted temperature of greenhouse film as of 1$\^{C}$ below than the mean value of ambient air and greenhouse air temperature. 4. Heat loss value of daytime was found to be larger than that of nigh as much as 1.3 to 2.3 times for the heating system with heat pump. 5. In the heating system with heat pump, when the lowest ambient temperature was -8$\^{C}$∼-7$\^{C}$ the air temperature of greenhouse was 5$\^{C}$∼6$\^{C}$, thus the heat pump heating system contributed in greenhouse heating by 13$\^{C}$.

  • PDF

Chemical Vapor Deposition of Ga2O3 Thin Films on Si Substrates

  • Kim, Doo-Hyun;Yoo, Seung-Ho;Chung, Taek-Mo;An, Ki-Seok;Yoo, Hee-Soo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.225-228
    • /
    • 2002
  • Amorphous $Ga_2O_3$ films have been grown on Si(100) substrates by metal organic chemical vapor deposition (MOCVD) using gallium isopropoxide, $Ga(O^iPr)_3$, as single precursor. Deposition was carried out in the substrate temperature range 400-800 $^{\circ}C$. X-ray photoelectron spectroscopy (XPS) analysis revealed deposition of stoichiometric $Ga_2O_3$ thin films at 500-600 $^{\circ}C$. XPS depth profiling by $Ar^+$ ion sputtering indicated that carbon contamination exists mostly in the surface region with less than 3.5% content in the film. Microscopic images of the films by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed formation of grains of approximately 20-40 nm in size on the film surfaces. The root-mean-square surface roughness from an AFM image was ${\sim}10{\AA}$. The interfacial layer of the $Ga_2O_3$/Si was measured to be ${\sim}35{\AA}$ thick by cross-sectional transmission electron microscopy (TEM). From the analysis of gaseous products of the CVD reaction by gas chromatography-mass spectrometry (GC-MS), an effort was made to explain the CVD mechanism.

Temperature History of the Concrete Corresponding to Various Curing Sheets in the Low Temperature (저온환경에서의 양생시트 변화에 따른 콘크리트의 온도이력 특성)

  • Baek, Dae-Hyun;Hong, Seak-Min;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.781-784
    • /
    • 2008
  • In this paper, insulating effect and strength development of concrete under low temperature are reported varying curing sheets. According to test results, in temperature -5$^{\circ}$C concrete subject to exposure and air cap condition, result in a frost damage at early age by a fall of below zero temperature. Mean while, the combination of PE film and non-woven fabric maintained around 3 $^{\circ}$C within first 24 hours since placement. For double bubble sheets, concrete temperature maintained above 7$^{\circ}$C due to its excellent heat insulating capability. As a result of core strength test, strength of specimens cured with viny + non-woven fabric and double bubble sheets had higher strength than strength of other specimens due to good heat insulation effect at early age.

  • PDF

Study on Vinyl Coating Cultivation of Potatoes under Low Temperature Conditions (조기 재배시 감자의 비닐 피복 재배 연구)

  • Choi, Kwan Soo;Jung, Gun Ho
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.556-564
    • /
    • 2017
  • Appropriate soil temperature and early planting of potato is very important for the successful potato-soybean cropping system in central region of South Korea. This experiment was carried out to determine the effect of mulching materials on the growth and yield of potato (Solanum tuberosum L.). Five different mulch treatments were had been applied on an upland soil as follows ; no mulch (NM), transparent film (TF), transparent film + additional transparent film (TF + ATF), black film (BF), and black film + additional transparent film (ATF). In the period of sowing time to removing additional films, mean soil temperature of the treatments was in the order of TF+ATF > TF > BR+ATF > BF as $20.3^{\circ}C$ > $18.5^{\circ}C$ > $16.1^{\circ}C$ > $15.4^{\circ}C$, respectively and that of NM was $13.8^{\circ}C$. The accumulated soil temperature was TF > NM > BF during the removing additional films to earthing at inter-tillage. On the changes in the soil temperature during a whole day, the temperature in the BF was lower than NM during around 18:00 PM to 12:00 NM, while NM was higher than BF in the time period of 10:00AM to 21:00PM. The sequence of potato sprout emergence was 15 > 18 > 20 > 22 days of TF+ATF, TF, BF+ATF, and BF, respectively and that of NM was 24 days. Comparing to the NM, potato sprout emergence was observed on the TF+ATF treated plot as early as 9 days. At 10 days before harvest, the significant difference in the tuber dry weight had been observed and the sequence tuber weight was in the order of TF > TF+ATF > BF+ATF > BF > NM. The potato yields of TF, TF+ATF, and BF+ATF were increased of 40.7, 37.3, and 22% as compared to NM ($2,805kg\;10a^{-1}$), but almost same yield in the BF. The differences of tuber dry weight and potato yields was co-related with the temperature rise of soil by the application of mulching materials on soil. Based on these results, application of mulching film had been very effective to increase the tuber size and the yield of potato by the temperature rise during seedling stage of potato. Transparent mulching was better than black mulching especially for the emergence of sprout of potato in relation to minimizing cooling injury.

Polycrystalline silicon thin film fabricated on plastic substrates by excimer laser annealing (엑시머 레이저 어닐링을 이용하여 플라스틱 기판에 형성한 다결정 실리콘 박막의 특성)

  • 조세현;이인규;김영훈;문대규;한정인
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • In this paper, we investigated the ultra-low temperature(<$150^{\circ}C$) polycrystalline silicon film on plastic substrate application using RF-magnetron sputtering and excimer laser annealing. Amorphous silicon films were deposited using Ar/He mixture gas at $120^{\circ}C$ and in-film argon concentration was less than 2%, which was measured to Rutherford Backscattering Spectrometry. At energy density 320mJ/$\textrm{cm}^2$, RMS roughness was 267$\AA$ and UV crystallinity was 62%. The grain size varies from 50nm to 100nm after excimer laser irradiation.

Effects of Bio-degradable Mulches on the Yield of Maize and the Density of Soil Microbe

  • Lim, Soo-Jeong;Lee, Min-Bum;Kim, Se-Won;Kim, Jang-Su;Heo, Su-Jeong;Choi, Seung-Chul;Yoon, Byeong-Sung;Kim, In-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.375-380
    • /
    • 2016
  • The use of polyethylene film has a problem such as increasing rural environmental contamination, collection costs and farmers' workload. The objective of this study was to evaluate bio-degradable films in terms of yield of maize and soil environment. Treatments were bio-degradable film A (BDF A), bio-degradable film B (BDF B), high density polyethylene (HDPE), and non-mulched (NM) soil. Daily mean values of soil temperature (10 cm depth) under BDF A, BDF B, and HDPE were higher than in NM soil by 2.2, 2.8, $3.1^{\circ}C$ respectively. In the mulching cultivation of maize, bio-degradable film began to degrade from 50~60days after the planting. The degradation was much progressed in the harvest time and almost decomposed in the following spring. The weight of ear of maize was not shown significantly by mulching treatments. There were little changes of soil chemical properties for the bio-degradable film mulching. After using bio-degradable films, the contents of biomass-C and dehydrogenase activity increased from 92 to $137{\sim}147mg\;kg^{-1}$, and from 87 to $123{\sim}168mg\;kg^{-1}$ respectively.

Measuring Convective Heat Transfer Coefficients of Nanofluids over a Circular Fine Wire Maintaining a Constant Temperature (등온으로 유지되는 가는 열선주위를 흐르는 나노유체의 대류열전달계수 측정실험)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • This paper describes a measuring apparatus that can be used to appraise the effectiveness of nanofluids as new heat-transfer-enhancing fluids. A couple of apparatuses using fine hot wires as sensors have been proposed for this purpose; however, they have a technical weakness related to the uncertain working conditions of the sensor. The present method uses the convective heat transfer coefficient from a hot wire as an indication of the heat transfer effectiveness of the nanofluid, where the temperature of the wire remains constant during the experiment. The operating principle and experimental procedure are explained in detail, and the validity of the system is tested with pure base fluids. The effects of particle concentration, velocity, and temperature on the heat transfer coefficients of the nanofluids are discussed comprehensively using the experimental data for graphite nanolubrication oil.

A Study on Heat Transfer Characteristics of a Closed Two-Phase Thermosyphon with a Low Tilt Angle (낮은 경사각을 갖는 밀폐형 2상 열사이폰의 열전달 특성에 관한 연구)

  • 김철주;강환국;김윤철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1996
  • In lots of application to heat exchanger systems, closed two-phase thermosyphons are tilted from a horizontal. If the tilt angle, especially, is less than 30$^{\circ}$, the operational performances of thermosyphon are highly dependent on tilt angle. The present study was conducted to better understand such operational behaviors as mech-anni는 of phase change, and flow patterns inside a tilted thermosyphon. For experiment, an ethanol thermosyphon with a 35% of fill charge rate was designed and manufactured, using a copper tube with a diameter 19mm and a length 1500mm. Through a series of test, the tilt angle was kept constant at each of 4 different values in the range 10~25deg. and the heat supply to the evaporator was stepwisely increased up to 30㎾/$m^2$. When a steady state was established to the thermosyphon for each step of thermal loads, the wall temperature distribution and vapor temperature at the condenser were measured. The wall temperature distributions demonstrated a formation of dry patch in the top end zone of the evaporator, with a values of temperature 20~4$0^{\circ}C$ higher than the wetted surface for a moderate heat flux q≒20㎾/$m^2$. Inspite of the presence of hot dry patch, however, the mean values of boiling heat transfer coefficient at the evaporator wall were still in a good agreement with those predicted by Rohsenow's formula, which was based on nucleate boiling. For the condenser, the wall temperatures were practically uniform, and the measured values of condensation heat transfer coefficient were 1.7 times higher than the predicted values obtained from Nusselt's film condensation theory on tilted plate. Using those two expressions, a correlation was formulated as a function of heat flux and tilt angle, to determine the total thermal resistance of a tilted thermosyphon. The correlation formula showed a good agreement with the experimental data within 20%.

  • PDF

Properties of ZnO:Ga Thin Films Deposited by RF Magnetron Sputtering with Ar Gas Flows (RF 마그네트론 스퍼터링법으로 제조한 GZO 박막의 Ar 유량에 따른 특성)

  • Kim, Deok Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.450-453
    • /
    • 2020
  • In this study, ZnO:Ga thin films were fabricated on a glass substrate using various Ar flows by an RF magnetron sputter system at room temperature. The dependencies of Ar flow on different properties were investigated. An appropriate control over the Ar flow led to the formation of a high-quality thin film. The ZnO:Ga films were formed as a hexagonal wurtzite structure with high (002) preferential orientation. The films exhibited a typical columnar microstructure and a smooth top face. The average transmittance was 85~89% within the visible area. By decreasing the Ar flow, the sheet resistance was decreased due to an increase in the grain size and a decrease in the root mean square roughness. The lowest sheet resistance of 86 Ω/□ was obtained at room temperature for the 40 sccm Ar flow.

Electrical characteristics of Au/3C-SiC/Si/Al Schottky, diode (Au/3C-SiC/Al 쇼터키 다이오드의 전기적 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.65-65
    • /
    • 2009
  • High temperature silicon carbide Schottky diode was fabricated with Au deposited on poly 3C-SiC thin film grown on p-type Si(100) using atmospheric pressure chemical vapor deposition. The charge transport mechanism of the diode was studied in the temperature range of 300 K to 550 K. The forward and reverse bias currents of the diode increase strongly with temperature and diode shows a non-ideal behavior due to the series resistance and the interface states associated with 3C-SiC. The charge transport mechanism is a temperature activated process, in which, the electrons passes over of the low barriers and in turn, diode has a large ideality factor. The charge transport mechanism of the diode was analyzed by a Gaussian distribution of the Schottky barrier heights due to the Schottky barrier inhomogeneities at the metal-semiconductor interface and the mean barrier height and zero-bias standard deviation values for the diode was found to be 1.82 eV and $s_0$=0.233 V, respectively. The interface state density of the diode was determined using conductance-frequency and it was of order of $9.18{\times}10^{10}eV^{-1}cm^{-2}$.

  • PDF