• Title/Summary/Keyword: Maxwell force

Search Result 155, Processing Time 0.021 seconds

Omni-Directional Magnet Wheel using Magnetic Shield (자기 차폐를 이용한 전방향 자기차륜)

  • Shim, Ki-Bon;Lee, Sang-Heon;Jung, Kwang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.72-80
    • /
    • 2009
  • When the magnet wheel rotates over a conducting plate, it generates the traction torque as well as the repulsive force on the conducting plate. Partially-cut traction torque results in the linear force into the tangential direction. To cut the traction torque, the concept of magnetic shield is introduced. The direction change of the linear force is realized varying the shielded area of magnetic field. That is, the tangential direction of non-shielded open area becomes the direction of the linear thrust force. Specially a shape of permanent magnets composing the magnet wheel leads to various pattern of magnetic forces. So, to enlarge the resulting force density and compensate its servo property a few simulations are performed under various conditions such as repeated pattern, pole number, radial width of permanent magnets, including shape of open area. The theoretical model of the magnet wheel is derived using air-gap field analysis of linear induction motor, compared with test result and the sensitivity analysis for its parameter change is performed using common tool; MAXWELL. Using two-axial wheel set-up, the tracking motion is tested for a copper plate with its normal motion constrained and its result is given. In conclusion, it is estimated that the magnet wheel using partial shield can be applied to a noncontact conveyance of the conducting plate.

The Characteristic Analysis for Thrust and Normal Force of Linear Pulse Motor (리니어 펄스 모터의 추력 및 수직력에 대한 특성 해석)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.142-151
    • /
    • 1999
  • Linear Pulse Motors (LPM) are used a field where SImOth linear motion is required, and it's position accuracy higher than that of a lead According to the advanUlge such as simplicity of rrechanical frarre, high reliability, precise open-loop operation, low inertia etc. LPM is awlied largely where it have made motor of this kind more and rmre attractive in many application areas such as factory automation and high speed positioning. This paper is researched to analyze for force characteristics of hybrid LPM with high accuracy and repeatability. Both the thrust and normal force are very sensitive to the airgap and tooth pitches of the forcer and platen. Here, the thrust shows a high content while the normal force is much higher than the thrust. For magnetic circuits of hybrid LPM is the complicated structure, the finite element rrethod (FEM) is employed with suitable rrethod for calculating the force. Therefore, both the virtual work principle and maxwell stress tensor have been used.n used.

  • PDF

Design Optimization for the Magnetic Engine Valve Actuator (엔진 밸브 자기 구동기의 설계 최적화)

  • Soh, Hyun-Jun;Park, Soon-Ok;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.584-589
    • /
    • 2009
  • As the automobile energy efficiency stands out an important matter of interest, the magnetic engine valve system receives attention. It has an advantage of no engine power leakage in opening and closing the valve. Moreover, it generates much bigger force than the piezo actuator system, so it can be a good alternative system of the cam and camshaft system. However, since the valve system is not light enough, it is necessary to make its weight reduce. In this study, topology optimization is applied to find the optimal shape of the armature in a magnetic valve system combined with the finite element analysis for the magnetic field analysis. The result is used to obtain a concept design. The adjoint variable method is employed in order to calculate the design sensitivity of the magnetic driving force in the armature component mostly to reduce the computational time during the repeated sensitivity calculation. The sequential linear programming is employed for the optimization algorithm.

Design of ultraprecision hi-directional actuator for nm using a permanent magnet and electromagnet (영구 자석과 전자석의 상호작용을 이용한 초정밀 양방향 구동기 설계)

  • Kim Ki-Hyun;Gweon Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.147-154
    • /
    • 2005
  • A precision hi-directional actuator for a high precision leveling system with $Z{\Theta}_x{\Theta}_y$ motions is proposed and designed in this paper. The actuator is composed of a force generation structure, a guide mechanism, and a symmetric structure. At first, its driving force is generated by a change of flux in air gaps by permanent and changeable flux. The permanent flux is generated by a permanent magnet. The changeable flux is created by variable current flowing through coil. The combination of permanent and changeable flux makes various flux densities in air gaps between moving part and fixed yokes. And then, the difference between flux densities in lower and upper gaps creates forces fur the $bi-direction({\pm}z)$ motion. The guide mechanism of this actuator is composed of two circular plates and one shaft. Reducing motions generated by forces except z-motion, these circular plates endow the actuator with high stiffness for fast settling time. And the function of the shaft is to transfer motion to an object. At last, total body has a symmetric structure to be stable on thermal error. The actuator is designed by MAXWELL 2D and ProMECHANICA. The designed actuator is evaluated by 8nm laser doppler vibrometer, dynamic signal analyzer, and simple PID controller.

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

Optimal Parametric Design of Coil Gun to Improve Muzzle Velocity (피투사체 속도 향상을 위한 코일건의 기구 변수 최적 설계)

  • Lee, Su-Jeong;Lee, Ju Hee;Lee, Dong Yeon;Seo, TaeWon;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.408-412
    • /
    • 2014
  • An electromagnetic launching system presents a viable projectile propulsion alternative with low cost and minimal environmental drawbacks. A coil gun system propels a projectile using an electromagnetic force and the system is mainly employed in military weapon systems and space launch systems. In this paper, we perform optimization design to improve the muzzle velocity by analyzing the sensitivity. The muzzle velocity, which is the most important design function variable, is affected by design variables including the number of axial turns in the electromagnetic coil, number of radial turns in the electromagnetic coil, initial distance between the projectile and the coil, inner radius of the electromagnetic coil, and length of the projectile. An orthogonal arrays matrix is configured, and a finite element analysis is performed utilizing the commercial electromagnetic analysis software MAXWELL. The muzzle velocity of the optimal design is 62.4% greater than that of the initial design.

Dynamic Behavior of Vacuum Circuit Breaker with Permanent Magnetic Actuator (영구자석형 조작기를 갖는 진공차단기의 동적거동)

  • Yu, Lyun;Kim, Young-Geun;Lee, Sung-Ho;Cho, Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.578-585
    • /
    • 2007
  • A vacuum circuit breaker (VCB) with permanent magnet actuator (PMA) has been studied in this study. Electromagnetic field analysis and dynamic simulations have been carried out for optimal design of VCB by using commercial software Maxwell and ADAMS. This simulation model can be an effective method for the VCB, which has non-linear output force of PMA, friction, and impact for operations. An experiment has been conducted to evaluate correctness of the simulated model. By using this evaluated model, the displacement and velocity characteristics of the VCB have been simulated with following conditions : (1) The different output forces of PMA have been applied, (2) The friction conditions in follow lever shaft and moving part have been changed, (3) The mass conditions of moving part have been changed. The simulated results shows that the velocity characteristics are mainly determined by the output force of PMA. The effects due to the changes of friction conditions against the dynamic characteristics was small, and the mass conditions of the moving parts affect the velocity and a bouncing phenomenon of VCB. From these results, the optimal design conditions for the VCB have been derived.

Improvement with Speed Response of Moving Magnet Type LDM (가동자석형 LDM의 속도응답특성 개선)

  • Maeng, In-Jae;Baek, Soo-Hyun;Kim, Yong;Yoon, Shin-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.5
    • /
    • pp.19-26
    • /
    • 2000
  • In this paper, to improve the mechanical response of the Moving Magnet Type LDM, the design of the LDM was optimized to achieve a large force to volume ratio without reduction the force. The model of the LDM and its optimization procedure were developed on the initial assumption that the magnetic circuit is linear. To analyze the magnetic flux distribution throughout the volume of the LDM and the slider back iron, a 2D finite element analysis of the LDM was performed.

  • PDF

Analysis of Thrust Characteristics of Multi-winding LDM (다권선형 LDM의 추력특성 해석)

  • Maeng, In-Jae;Baek, Soo-Hyun;Kim, Yong;Yoon, Shin-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.57-64
    • /
    • 2000
  • In this paper, to achieve the constant thrust force of the double side moving-magnet type LDM, the new armature winding of the LDM was proposed so as to restrain the saturation of the center yoke without increasing the mass of LDM. According to analyzing the magnetic flux distribution throughout the air-gap of the LDM, the magnet and winding width (1:0.84) was determined. The 2D finite element analysis was performed for force analysis on air-gap.

  • PDF

Development of Low Loss Magnetic Levitation System (저손실 자기부상 시스템 개발)

  • Kim Jong-Moon;Kang Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.592-600
    • /
    • 2005
  • In this paper, a low loss magnetic levitation(Maglev) system is suggested and tested. The suggested Maglev system includes four hybrid magnets which consist of permanent magnet and coil. In the steady state, the levitated module system can be supported by attraction force generated by permanent magnet. The coil current controls only dynamic loads due to external disturbances. The module systems are designed by using finite element method(FEM) software tools such as MAXWELL and ANSYS. Also, digital control systems are designed to keep the magnet airgap at a constant value. The control systems include a VME(versa module europa)-based CPU(central processing unit) board, AD(analog to digital) board, PWM(pulse width modulation) board, 4-quadrant chopper, and sensors. In order to estimate the vertical velocity of the magnet, we use second order state observer with acceleration and gap signals as input and output signals, respectively. The characteristics of the suggested low loss Maglev system are demonstrated by experimental results showing coil current of 0A in the steady state of 3m airgap and performance specifications are satisfied for reference gap and force disturbance.