• Title/Summary/Keyword: Maxwell equations

Search Result 177, Processing Time 0.026 seconds

ON SEMILOCAL KLEIN-GORDON-MAXWELL EQUATIONS

  • Han, Jongmin;Sohn, Juhee;Yoo, Yeong Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1131-1145
    • /
    • 2021
  • In this article, we study the Klein-Gordon-Maxwell equations arising from a semilocal gauge field model. This model describes the interaction of two complex scalar fields and one gauge field, and generalizes the classical Klein-Gordon equation coupled with the Maxwell electrodynamics. We prove that there exist infinitely many standing wave solutions for p ∈ (2, 6) which are radially symmetric. Here, p comes from the exponent of the potential of scalar fields. We also prove the nonexistence of nontrivial solutions for the critical case p = 6.

THE N-ORDER ITERATIVE SCHEME FOR A SYSTEM OF NONLINEAR WAVE EQUATIONS ASSOCIATED WITH THE HELICAL FLOWS OF MAXWELL FLUID

  • Ngoc, Le Thi Phuong;Dzung, Nguyen Vu;Long, Nguyen Thanh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.471-497
    • /
    • 2022
  • In this paper, we study a system of nonlinear wave equations associated with the helical flows of Maxwell fluid. By constructing a N-order iterative scheme, we prove the local existence and uniqueness of a weak solution. Furthermore, we show that the sequence associated with N-order iterative scheme converges to the unique weak solution at a rate of N-order.

Maxwell nanofluid flow through a heated vertical channel with peristalsis and magnetic field

  • Gharsseldien, Z.M.;Awaad, A.S.
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.77-86
    • /
    • 2022
  • This paper studied the peristaltic transport of upper convected Maxwell nanofluid through a porous medium in a heated (isothermal) symmetric vertical channel. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. These phenomena are modeled mathematically by a differential equations system by taking low Reynolds number and long-wavelength approximation, the yield differential equations have solved analytically. A suggested new technique to display and discuss the trapping phenomenon is presented. We discussed and analyzed the pumping characteristics, heat function, flow velocity and trapping phenomena which were illustrated graphically through a set of figures for various values of parameters of the problem. The numerical results show that, there are remarkable effects on the vertical velocity, pressure gradient and trapping phenomena with the thermal change of the walls.

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

The Study of the Electroconductive Liquids Flow in a Conduction Magnetohydrodynamic Pump

  • Naceur, Sonia;Kadid, Fatima Zohra;Abdessemed, Rachid
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.252-256
    • /
    • 2016
  • This paper deals the study of a linear MHD pump solution used to eliminate and to avoid the dangers of the mercury appearing through pollution and contamination. The formulation of the magnetohydrodynamic phenomena is derived from Maxwell and Navier-Stokes equations are solved using the finite volume method. Simulation results highlight the performance of the pump such as the electromagnetic force, the velocity, and the pressure, the application of Ansys-Fluent software validation these results.

Analysis of SAR Distribution Characteristics in a Head Model using FDTD (FDTD를 이용한 인체 두부모델의 SAR 분포특성 해석)

  • Hong, Dong-Uk;Kim, Doo-Hyun;Kang, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.34-40
    • /
    • 2004
  • This paper presents an analysis of SAR(Specific Absorption Rate) distribution characteristics in a head model using FDTD(Finite Difference Time Domain). In this study human head was modelled in four elements-layered structure, consisting of skin, fat, skull and brain. To calculate the electromagnetic fields wihtin the head model, FDTD method was used. In the FDTD method, the electromagnetic wave is analyzed by solving a Maxwell's equations repeatedly. For the calculation, distance between power source and head model increased by 10[m]. Power density and incident electric field intensity were calculated. Based on the incident electric field, the program which calaculated internal electric fields intensity and SAR calculation of the head model were developed. The results of developed program using FDTD were compared with those of a commericial programs, which showed the availability and usefulness of the suggested scheme in this paper.

Analysis of magnetic circuits by F.E.M. (유한요소법에 의한 자기회로 해석)

  • 이기식
    • 전기의세계
    • /
    • v.29 no.9
    • /
    • pp.599-603
    • /
    • 1980
  • Mathematically, the Electromagnetic phenomena can be represented by the Maxwell's equations, but it is very difficult to solve these equations, especially, having complex structural boundaries. By the way, the development of a computer system made us easy to solve these kind of partial differential equations. The Finite Element Method, one of the numerical methods, is very this. This paper shows the power of F.E.M. by examining, with an example of a hollow cylinder in a uniform magnetic field which is analytically solvable, the errors and the tendency of magnetic flux lines.

  • PDF

Thermochemical Performance Analysis of Hydrazine Arc Thruster (하이드라진 아크 추력기의 열화학적 성능해석)

  • Shin Jae-Ryul;Oh Se-Jong;Choi Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.35-38
    • /
    • 2005
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant hydrazine ($N_{2}H_4$) as a working fluid. Coupled Reynolds Averaged Navier-Stokes (RANS) equations and Maxwell equations were used to account for the Ohm heating and Lorentz forces. Hydrazine chemistry and thermal radiation were also incorporated to the fluid dynamic equations by assuming infinitely-fast reactions and optically thick media. In addition to the thermo-physical understandings of the flow field inside the arcjet thruster, results shows that performance indices are improved by amount of $20\%$ in thrust and $200\%$ in specific impulse with the 0.6kW are heating.

  • PDF

Chemical Equilibrium Flow and Performance Analysis of the Arcjet Thruster with Ionization Effects (이온화를 고려한 Arcjet 추력기의 화학 평형 유동 및 성능해석)

  • Shin Jae-Ryul;Oh Se-Jong;Choi Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.132-135
    • /
    • 2005
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant hydrazine $(N_2H_4)$ as a working fluid. Coupled Reynolds Averaged Navier-Stokes (RANS) equations and Maxwell equations were used to account for the Ohm heating and Lorentz forces. ionization and thermal radiation effects were also incorporated to the fluid dynamic equations by assuming infinitely-fast reactions and optically thick media. In addition to the thermo-physical understandings of the flow field inside the arcjet thruster, results shows that performance indices are improved by amount of 20% in thrust and 70% in specific impulse with the 0.6kW are heating.

  • PDF