• Title/Summary/Keyword: Maximum von mises stress

Search Result 208, Processing Time 0.036 seconds

Finite Element Analysis on the Stress and Displacement Behavior Safeties of Dome Roof Structures for a LNG Storage Tank (LNG 저장탱크 돔루프 구조물의 응력 및 변형거동 안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.7-12
    • /
    • 2010
  • This paper presents FE analysis on the stress and displacement behavior safeties of dome roof structures for a LNG outer tank, which is constructed by sets of H beams and reinforced concrete. The excitation force of 0.2g is applied at the center of the bottom concrete structure of an outer tank. The computed FEM results indicated that the maximum von Mises stress was shown at the edge of dome roof structure and the maximum displacement was produced at the center of dome roof. The results showed that the concentrated stress and displacement were steadily increased for an increased number of H beams. This means that the number of H beams does not critically affect to the safety of the dome roof structure because the stiffness of a reinforced concrete structure is much higher than that of H beams. Thus, the number of H beams may be restricted under 60 due to a dead weight of H beams for 0.2g excitation force.

Stress Analysis and Lead Pin Shape Design in PGA (Pin Grid Array) Package (PGA (Pin Grid Array) 패키지의 응력해석 및 Lead Pin 형상설계)

  • Cho, Seung-Hyun;Choi, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2011
  • Research about the geometry design of lead pin was carried based on the normal or shear stress of the interface between a lead pin and a PCB in terms of delamination failure. The taguchi method with four design factors of three levels and FEA(Finite element Analysis) are carried under $20^{\circ}$ bending and 50 ${\mu}m$ tension of lead pin. The contact width, d2, between head round and copper pad in PCB is the highest affection factor among design factors by analysis of contribution analysis. Equivalent von Mises stress of 18.7% reduction design is obtained by the parameter design of the taguchi method. Maximum normal stress occurred at contact position between solder outer surface and a Cu pad in PCB. Also, maximum shear stress happened at contact position between solder outer surface and SR layer of PCB. From these calculated results, delamination of the PGA package may be occurred from outer interface of solder to inner interface of solder.

Contact Analysis Between Rubber Seal, a Spherical Particle and Coated Steel Surface (시일과 코팅된 스틸면 사이의 구형 입자에 의한 접촉해석)

  • Park, Tae-Jo;Jo, Hyeon-Dong
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.225-230
    • /
    • 2009
  • Seals are very useful machine components in protection of leakage of lubricant or working fluid, and incoming of debris from outside. Various elastomer are widely used as sealing materials and the shaft surfaces are generally coated with high hardness material after heat treatment. It is generally known that the foreign debris and wear particles get stuck into sealing surface, the steel shaft surface can be damaged and worn by mainly abrasive wear. In this paper, using MARC, contact analysis are conducted to show the hard coated steel shaft surface can be fatigue failed by very small elastic particle intervened between seal and steel surface. Variations of contact and von-Mises stress distributions and contact half-widths with interference and coating thickness are presented. The maximum von-Mises stress occurs always in the coating layer or between coated layer/substrate interface. Therefore the coated sealing surface can be fatigued and then failed by very small particles. The results can be used in design of sealing surface and further studies are required.

A Study on the Fatigue Damage of a Railway Disc Brake Surface Due to Thermal Stress During Braking Using FEM Analysis (FEM을 이용한 철도차량용 제동 디스크의 제동시 답면에서의 열응력에 의한 피로손상에 관한 연구)

  • Joo, Se-Min;Kwon, Yong-Sang;Kim, Ho-Kyung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.212-218
    • /
    • 2009
  • In order to investigate the thermal cracking of the rolling stock brake disc, finite element analysis was conducted on the temperature distribution and thermal stress of the disc during braking. In case of initial vehicle speed of 90, 106, 120km/h, the maximum temperature on the disk surface due to braking was $135.9^{\circ}C,\;157.9^{\circ}C,\;178.7^{\circ}C$, respectively. And, the maximum von-Mises stress at the disc surface was 42.4, 50.3, 57.1MPa at a speed of 90, 105, 120km/h, respectively, indicating that the stress increases with an increment in the speed. Damage fraction due to braking during one year running on the Seoul - Busan line was determined as 14.6%.

Stress distribution in premolars restored with inlays or onlays: 3D finite element analysis

  • Yang, Hongso;Park, Chan;Shin, Jin-Ho;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Chung, Hyunju
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.184-190
    • /
    • 2018
  • PURPOSE. To analyze stress distribution in premolars restored with inlays or onlays using various materials. MATERIALS AND METHODS. Three-dimensional maxillary premolar models of abutments were designed to include the following: 1) inlay with O cavity (O group), 2) inlay with MO cavity (MO group), 3) inlay with MOD cavity (MOD group), and 4) onlay (ONLAY group). A restoration of each inlay or onlay cavity was simulated using gold alloy, e.max ceramic, or composite resin for restoration. To simulate masticatory forces, a total of 140 N static axial force was applied onto the tooth at the occlusal contact areas. A finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. RESULTS. Maximum von Mises stress values generated in the abutment teeth of the ONLAY group were ranged from 26.1 to 26.8 MPa, which were significantly lower than those of inlay groups (O group: 260.3-260.7 MPa; MO group: 252.1-262.4 MPa; MOD group: 281.4-298.8 MPa). Maximum von Mises stresses generated with ceramic, gold, and composite restorations were 280.1, 269.9, and 286.6 MPa, respectively, in the MOD group. They were 252.2, 248.0, 255.1 MPa, respectively, in the ONLAY group. CONCLUSION. The onlay design (ONLAY group) protected tooth structures more effectively than inlay designs (O, MO, and MOD groups). However, stress magnitudes in restorations with various dental materials exhibited no significant difference among groups (O, MO, MOD, ONLAY).

A Study on the Structural Stability of Nozzle Manufactured with 5-axis Machining (5축 가공으로 제작한 노즐의 구조 안정성에 관한 연구)

  • Changwook Lee;Yongseok Park;DuckYong Jo;Seong Man Choi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.44-51
    • /
    • 2022
  • In this study, 5-axis machining was proposed as a method for manufacturing a nozzle with a curved shape, and flow analysis and structural analysis were used for structural validation of the manufactured geometry. The program used for CFD obtained the internal temperature and pressure distribution of the nozzle using STAR-CCM+ and used it as the boundary condition for structural analysis. For structural analysis, the commercial program NASTRAN was used, and stress was calculated using the von-mises technique. Based on the maximum stress value generated, the safety margin was 0.78 and the safety margin of the bearing stress was 46.8. In addition, the creep life was calculated as 9.97 x 1012 hours using the Larson-Miller parametric method and applying the maximum stress value of 187 MPa and the exhaust gas perfectly mixed temperature of 463 K.

Structural Safety Analysis According to the Shape of Door Impact Bar (도어 충격봉의 형상에 따른 구조 안전 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.21-25
    • /
    • 2012
  • In this study, the safest model can be selected by the simulation result of structural safety analysis according to the shape of impact bar affected at side door of automobile. The open sectional model of semicircle type has the lowest deformation and stress among 4 kinds of models. As the weight of this model has 30% in comparison with other models, it becomes most economical and stable. As the open sectional model of cap type the highest deformation and stress among 4 kinds of models, it becomes weakest. The closed models with circular and rectangular types has the stress far lower than cap type. The maximum deformation is shown at the center part of impact bar but the maximum stress occurs at the joint part between impact bar and frame.

A Study on the Characteristics of Stress Distribution of 3-kinds of holes on a cantilever (외팔보에서 3가지 홀의 형상변화에 따른 음력분포특성에 관한 연구)

  • 최경호;권영석;홍도관;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.757-760
    • /
    • 2002
  • In this study, 3 kinds of holes (square, circular and elliptic holes) are attempted on a cantilever to reduce the weight by 30%. Maximum Von-Mises stresses of cantilever plate with 3 kinds of holes are investigated. For the elliptic holes, a shape optimization is attempted to fad the optimum angle of axis by rotating the axis by $10^{\circ}\; from\; 50^{\circ}\; to\; 120^{\circ}\;$ From the results, it is known that the maximum stress is decreased to 0.868 MPa by rotation of the axis of elliptic hole and 0.26 MPa is decreased compared with the maximum stress occurred on the circular hole.

  • PDF

Factors influencing primary stability of miniplate anchorage: a three-dimensional finite element analysis (미니플레이트의 골내 고정원 적용 시 초기 안정성에 영향을 주는 요인에 대한 3차원 유한요소법적 연구)

  • Lee, Nam-Ki;Choi, Dong-Soon;Jang, In-San;Cha, Bong-Kuen
    • The korean journal of orthodontics
    • /
    • v.38 no.5
    • /
    • pp.304-313
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the stress distribution in bone and displacement distribution of the miniscrew according to the length and number of the miniscrews used for the fixation of miniplate, and the direction of orthodontic force. Methods: Four types of finite element models were designed to show various lengths (6 mm, 4 mm) and number (3, 2) of 2 mm diameter miniscrew used for the fixation of six holes for a curvilinear miniplate. A traction force of 4 N was applied at $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$ to an imaginary axis connecting the two most distal unfixed holes of the miniplate. Results: The smaller the number of the miniscrew and the shorter the length of the miniscrew, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. Most von Mises stress in the bone was absorbed in the cortical portion rather than in the cancellous portion. The more the angle of the applied force to the imaginary axis increased, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. The maximum von Mises stress in the bone and maximum displacement of the miniscrew were measured around the most distal screw-fixed area. Condusions: The results suggest that the miniplate system should be positioned in the rigid cortical bone with 3 miniscrews of 2 mm diameter and 6 mm length, and its imaginary axis placed as parallel as possible to the direction of orthodontic force to obtain good primary stability.

Effect of Bone Quality on Insertion Torque during Implant Placement; Finite Eelement Analysis (임플란트 식립 시 골질이 주입회전력에 미치는 영향에 관한 삼차원 유한요소 분석)

  • Jeong, Jae Doug;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.109-123
    • /
    • 2009
  • The aim of the study was to assess the influence of insertion torque of bone quality and to compare axial force, moment and von Mises stress using finite element analysis of plastoelastic property for bone stress and strain by dividing bone quality to its thickness of cortical bone, density of trabecular bone and existence of lower cortical bone when implant inserted to mandibular premolar region. The $Br{\aa}nemark$ MKIII. RP implant and cylindrical bone finite model were designed as cortical bone at upper border and trabecular bone below the cortical bone. 7 models were made according to thickness of cortical bone, density of trabecular bone and bicortical anchorage and von Mises stress, axial force and moment were compared by running time. Dividing the insertion time, it seemed 300msec that inferior border of implant flange impinged the upper border of bone, 550msec that implant flange placed in middle of upper border and 800msec that superior border of implant flange was at the same level as bone surface. The maximum axial force peak was at about 500msec, and maximum moment peak was at about 800msec. The correlation of von Mises stress distribution was seen at both peak level. The following findings were appeared by the study which compared the axial force by its each area. The axial force was measured highest when $Br{\aa}nemark$ MKIII implant flange inserts the cortical bone. And maximal moment was measured highest after axial force suddenly decreased when the flange impinged at upper border and the concentration of von Mises stress distribution was at the same site. When implant was placed, the axial force and moment was measured high as the cortical bone got thicker and the force concentrated at the cortical bone site. The influence of density in trabecular bone to axial force was less when cortical bone was 1.5 mm thick but it might be more affected when the thickness was 0.5 mm. The total axial force with bicortical anchorage, was similar when upper border thickness was the same. But at the lower border the axial force of bicortical model was higher than that of monocortical model. Within the limitation of this FEA study, the insertion torque was most affected by the thickness of cortical bone when it was placed the $Br{\aa}nemark$ MKIII implant in premolar region of mandible.