• Title/Summary/Keyword: Maximum specific growth rate

Search Result 281, Processing Time 0.022 seconds

인간 신경아세포종 세포 배양을 통한 뇌 신경세포 생육 촉진인자의 생산

  • Hong, Jong-Soo;Woo, Kwang-Hoe;Park, Kyung-You;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.102-105
    • /
    • 1997
  • In cultivating human neuroblastoma cells maximum number of neurites per cell and length of the neurite were estimated as 5.5 and 2.2 (nm), respectively It was found that there was correlation between growth and differentiation of nerve cells. Maximum specific BDNF production rate was also calculated as 2.5$\times $10$^{-5}$(ng/cell/day) at 7$\times $ 10$^{5}$ (viable cells/ml) of maximum cell density, corresponding to 100 (ng/mL) of BDNF. The secretion of BDNF was occurred most in the later peroids of the cultivation, yielding 75 (ng/mL) of BDNF. The production of rate of BDNF was elongated in adding 1 ($\mu $g/mL) of BDNF as well as 40% increase of the length of the BDNF. It proves that BDNF can be used as one of biopharmaceuticals to treat age-related diseases such as Alzheimer's disease and Prakinson's disease. It can also provide the information of scaling-up mammalian cell cuture system to economically produce BDNF.

  • PDF

Process Kinetics of Nisin Production in Batch and Continuous Culture (회분식 및 연속식 배양시 Nisin의 생산특성)

  • Yoo, Jin-Young;Park, Shin-Yang;Jin, Young-Ok;Koo, Young-Jo;Chung, Kun-Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.504-509
    • /
    • 1989
  • Fermentation condition of Streptococcus lactis IFO 12007 for nisin production was examined. The optimal glucose concentration was 60g/ι. The pH and temperature optimum were 6.5 and 31$^{\circ}C$, respectively. The maximum nisin activity in batch culture was 2000IU/$m\ell$. The fermentation quotients after 7 hours of fermentation in batch culture were; specific glucose uptake rate:0.59g/g/h , specific nisin productivity: 34924IU/g/h, product yield: 5944IU/g, growth yield:0.24, biomass:4.81g/ι. The specific growth rate was affected by pH and temperature and the activation energy for growth was 1.35kcal/mole. pH control was essential for nisin production. Fed-batch culture using 20g/$\ell$ glucose medium produced 1420IU/$m\ell$ after 14 hours. The continuous culture could be operated at below 0.38h$^{-1}$ for nisin production. The steady state nisin concentration and specific nisin productivity were 740IU/$m\ell$ and 45000IU/g/h. The growth yield and maintenance energy were 0.144 and 207mg glucose/g-cell/h.

  • PDF

Exopolysaccharide Production by Aureobasidium pullulans - Appearance of Melanin Pigment - (Aureobasidium pullulans 에 의한 Exopolysaccharide 생산 - 멜라닌 색소의 출현에 관한 연구 -)

  • 김재형;이기영;강성홍
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.134-142
    • /
    • 1989
  • In exopolysaccharide fermentation by Aureobasidium pulluans, the effects culture conditions (concentration of nitrogen, potassium phosphate, dissolved oxygen, and initial pH) on the production of exopolysaccharide and the appearance of melanin pigment were investigated. The results are as follows. (1) The specific growth rate and the specific production rate of exopolysaccharide were inhibited by substrate when the carbon source concentration higher than $50g\;/\;{\ell}$ and the cell growth increased with increases of nitrogen source but exopolysaccharide production decreased with the nitrogen concentration when it become greater than $1\;g\;/\;{\ell}$. (2) The maximum cell growth and the maximum exopolysaccharide production were obtained at initial pH values of 3.0 and 7.5 respectively. As the initial pH increased, the yeast-like cells increased and the increased of dissolved oxygen increased the cell growth and exopolysaccharide production. (3) As the concentration of dissolved oxygen is increased or the concentration of nitrogen source is decreased, the period of melanin pigment appearance becomes shorter and the melanin pigment never appeared when the initial pH was less than 3.0 or the potassium phosphate was not added.

  • PDF

Growth of the Brackish Water Flea, Diaphanosoma celebensis, on Different Foods and Food Concentrations (먹이종류 및 공급량에 따른 기수산 물벼룩, Diaphanosoma celebensis의 성장)

  • Park, Jin-Chul;Park, Heum-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • This study determined the optimum microalgae species and concentration for the brackish water flea, Diaphanosoma celebensis, in individual and community cultures by feeding it several different diets. Six single trials (Tetraselmis suecica, Isochrysis galbana, marine Chlorella ellipsoidea, freshwater Chlorella vulgaris, Scenedesmus sp., Selenastrum sp.) were conducted at 10 psu and $30^{\circ}C$. The community and individual cultures of the water flea were performed in 1-L beakers and 3-mL vessels (12-well culture plates), respectively. In the community cultures, the maximum density and specific growth rate were highest for water fleas fed T. suecica, reaching 60.0 individuals (ind.)/mL and 0.40, respectively. In the individual cultures, the most offspring and greatest life span of females were 56.9 ind. and 24.3 days, respectively, in the T. suecica trial. By contrast, diets of Scenedesmus sp. and Selenastrum sp. resulted in poor growth rates. In the T. suecica experiments examining a range of 10 to $200\times10^3$ cells/indl. the specific growth rate of the water flea tended to increase with the amount of supplement, while the life span decreased. The maximum density and number of offspring of females was highest at 53.5 ind./mL and 38.8 ind. respectively, at 40,000 cells/ind. These results suggest that the best microalgae species for the mass culture of D. celebensis is T. suecica and the optimum concentration is 40,000 cells per individual.

Optimum Salinity and Temperature Condition for Mass Culture of the Brackish Water Flea, Diaphanosoma celebensis (기수산 물벼룩, Diaphanosoma celebensis의 대량배양을 위한 최적 염분 및 수온 조건)

  • Park, Jin-Chul;Park, Heum-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.2
    • /
    • pp.139-145
    • /
    • 2010
  • This study investigated the optimum salinity and temperature conditions for mass culture of the brackish water flea, Diaphanosoma celebensis. Community and individual cultures of flea were maintained in 1 L beakers and 3 mL vessels (of a 12-well culture plate), respectively, and fed green algae, Tetraselmis suecica. In salinity experiments ranging from 5 to 34 psu, continuous growth of flea populations was found up to 34 psu. However, the specific growth rate and life span of females showed decreasing tendencies with the increase of salinity. The highest maximum density and offspring number were 33.6 individuals (ind.)/mL and 55.3 ind. at 10 psu, respectively. In the temperature experiments ranging from 20 to $40^{\circ}C$, population growth of D. celebensis increased continuously until $35^{\circ}C$ and then decreased over $40^{\circ}C$. The specific growth rate was significantly higher at 25 and $30^{\circ}C$ than at 20 and $40^{\circ}C$. Female life span tended to decrease with temperature increase. The highest maximum density and offspring number were 52.3 ind./mL and 46.0 ind. at $30^{\circ}C$, respectively. These results suggest that the optimum salinity and temperature for mass culture of D. celebensis may be 10 psu and $30^{\circ}C$, respectively.

Growth Modelling of Listeria monocytogenes in Korean Pork Bulgogi Stored at Isothermal Conditions

  • Lee, Na-Kyoung;Ahn, Sin Hye;Lee, Joo-Yeon;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.108-113
    • /
    • 2015
  • The purpose of this study was to develop predictive models for the growth of Listeria monocytogenes in pork Bulgogi at various storage temperatures. A two-strain mixture of L. monocytogenes (ATCC 15313 and isolated from pork Bulgogi) was inoculated on pork Bulgogi at 3 Log CFU/g. L. monocytogenes strains were enumerated using general plating method on Listeria selective medium. The inoculated samples were stored at 5, 15, and $25^{\circ}C$ for primary models. Primary models were developed using the Baranyi model equations, and the maximum specific growth rate was shown to be dependent on storage temperature. A secondary model of growth rate as a function of storage temperature was also developed. As the storage temperature increased, the lag time (LT) values decreased dramatically and the specific growth rate of L. monocytogenes increased. The mathematically predicted growth parameters were evaluated based on the modified bias factor ($B_f$), accuracy factor ($A_f$), root mean square error (RMSE), coefficient of determination ($R^2$), and relative errors (RE). These values indicated that the developed models were reliably able to predict the growth of L. monocytogenes in pork Bulgogi. Hence, the predictive models may be used to assess microbiological hygiene in the meat supply chain as a function of storage temperature.

Kinetics and Modelling of Cell Growth and Substrate Uptake in Centella asiatica Cell Culture

  • Omar, Rozita;Abdullah, M.A.;Hasan, M.A.;Rosfarizan, M.;Marziah, M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • In this study, we have conducted kinetics and modelling studies of Centella asiatica cell growth and substrate uptake, in an attempt to evaluate cell growth for a better understanding and control of the process. In our bioreactor cultivation experiment, we observed a growth rate of 0.18/day, a value only 20% higher than was seen in the shake flask cultivation trial. However, the observed maximum cell dry weight in the shake flask, 10.5g/L, was 14% higher than was achieved in the bioreactor. Ninety seven percentage confidence was achieved via the fitting of three unstructured growth models; the Monod, Logistic, and Gompertz equations, to the cell growth data. The Monod equation adequately described cell growth in both cultures. The specific growth rate, however, was not effectively predicted with the Logistic and Gompertz equations, which resulted in deviations of up to 73 and 393%, respectively. These deviations in the Logistic and Gompertz models may be attributable to the fact that these models were developed for substrate-independent growth and fungi growth, respectively.

Effect of elevated pCO2 on thermal performance of Chattonella marina and Chattonella ovata (Raphidophyceae)

  • Lim, Myeong Hwan;Lee, Chung Hyeon;Min, Juhee;Lee, Hyun-Gwan;Kim, Kwang Young
    • ALGAE
    • /
    • v.35 no.4
    • /
    • pp.375-388
    • /
    • 2020
  • Ocean acidification and warming, identified as environmental concerns likely to be affected by climate change, are crucial determinants of algal growth. The ichthyotoxic raphidophytes Chattonella species are responsible for huge economic losses and environmental impact worldwide. In this study, we investigated the impact of CO2 on the thermal performance curves (TPCs) of Chattonella marina and Chattonella ovata grown under temperatures ranging from 13 to 34℃ under ambient pCO2 (350 μatm) and elevated pCO2 (950 μatm). TPCs were comparable between the species or even between pCO2 levels. With the exception of the critical thermal minimum (CTmin) for C. ovata, CTmin for C. marina and the thermal optimum (Topt) and critical thermal maximum (CTmax) for both species did not change with elevation of pCO2 levels. While CO2 enrichment increased the maximum photosynthetic rates (Pmax) up to 125% at the Totp of 30℃, specific growth rates were not significantly different under elevated pCO2 for the two species. Overall, C. ovata is likely to benefit from climate change, potentially widening its range of thermal tolerance limit in highly acidic waters and contributing to prolonged phenology of future phytoplankton assemblages in coastal waters.

Comparative Characterization of Growth and Recombinant Protein Production among Three Insect Cell Lines with Four Kinds of Serum Free media

  • Kwon, Mi-Sun;Takashi Dojima;Park, Enoch Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.142-146
    • /
    • 2003
  • Three insect cell lines, Sf9, Sf21 and Tn5Bl-4, and four different kinds of serum free media (SFM), Sf 900 II, EX-CELL 420, EX-CELL 405 and Express Five, were used to compare the nutrient consumption, byproduct formation, production of recombinant protein and protease activity in suspension cultures. The Sf 900 II SFM was a ppropriate for the cell growth and protein production of the Sf9 and Sf21 cell lines. When the Tn5Bl-4 cell line was grown in the Express Five SFM, the specific growth rate was 1.6 fold higher than those of either the Sf9 or Sf21 cell lines. The glucose and glutamine consumption rates per cells, were 4 and 2.3 times higher than those of the Sf9 cell line, respectively. The overall yield coefficients of the lactate and ammoniumion were 2.8 and 1.5 times higher compared to those of the Sf9 cell line. respectively. The maximum specific ${\beta}$-galactosidase production rate was 4.5 fold that of the Sf9 cell line, a 3 times higher protease activity per cell.

Optimal Culturing and Enhancement of Lipid Accumulation in a Microalga Botryococcus braunii (미세조류 Botryococcus braunii의 배양조건 최적화 및 지질축적 향상)

  • Kwon, Sung-Hyun;Lee, Eun-Mi;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.779-785
    • /
    • 2012
  • Several tests and experimental work have been done for identifying the best growth conditions and accumulated amount of lipid moiety in B. braunii, a microalga(UTEX 572) in terms of media composition. The specific growth rate was found to be the highest at 0.15 g/L-day when the phosphorus concentration was doubled with the other ingredients at the normal level. Experiments for varied media compositions revealed that the accumulation of lipid was the highest at 48% (dry cell weight based) in the nitrogen deficient medium and its corresponding specific growth rate was comparative to that in the normal BG 11 medium. In the bubble column experiments, carbon dioxide containing air produced four times more cell mass than air only. Light and glucose addition also enhanced cell mass with maximum, 1.8 g/L and accordingly 42% of lipid composition, which turned out to be a better strategy for higher lipid-producing microalgal culture.