• Title/Summary/Keyword: Maximum specific growth rate

Search Result 281, Processing Time 0.035 seconds

A Study on the Conversion to Feed Stuff from Cellulosic Biomass (섬유질자원(纖維質資源)의 사료(飼料) 전환(轉換))

  • Lee, Ke-Ho;Sung, Chang-Geun;Chung, Kyu-Ok
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.29-46
    • /
    • 1984
  • To utilize several species of hard wood as raw materials of feed products, fermentation characteristics of cellulosic substrates to single cell protein was investigated, and results were summarized as follows. Among the microorganisms investigated, Tricoderma viride was selected as one of the most cellulolytic. Mixed culture of fungi did not show a synergistic effect on cellulose degradation. When the fungi were cultured at $28^{\circ}C$ for 7 days in a medium containing wheat bran 25 g, cellulose 0.25 g, proteose peptone 0.025 g and tween 800.025 g, cellulotic activities on carboxy methyl cellulose and filter paper reached maximum at 12 hr. The alkali treatment resulted in increased degradation of substrate from 13 to 18% when treated with enzymes for 12h, and reducing sugar formation increased with decreased size of substrates. Glucose was a very good feedback inhibitor of the enzyme from T.viride than that of xylose. When the substrate was rehydrolyzed, hydrolysis rate was 31% to reducing sugars within 12 hr. Quantative anlysis with HPLC showed the ratio of glucose to xylose in sugar syrups as 1.77 to 1. For the purpose of producing cellulosic-single cell protein from the sawdust of mulberry tree, 15 strains of xylose-assimilating yeast were isolated from 42 samples of rotten woods and compost soils and examined for their ability to utilize xylose. Then three strains were selected by their strong xylose-assimilating activities. The cultivative condition, the growth characteristics, and protein and nucleic acid productivities of three strains were investigated. The results obtained were, 1. Wood hydrolysate of mulberry tree was assimilated by 5 strains of CHS-2, CHS-3, ST-40, CHS-12 and CHS-13. 2. The optimum initial pH and temperature for the growth of strain CHS-13 were 4.4 and $30^{\circ}C$. 3. The specific growth rate of strain CHS-13 was $0.23h^{-1}$ and generation time was 3.01 hrs at the optimum condition. 4. CHS-13 strain assimilated 81 % of sugar in wood hydrolysate. 5. CHS-13 strain was identified as Candida guilliermondii var. guilliermondii 6. When the CHS-13 strain was cultured in the wood hydrolysate containing yeast extract, L-protein content was increased with yeast extract concentration. 7. The L-protein and nucleic acid yields from wood hydrolysate were 0.73 mg/ml and $4.92{\times}10^{-2}\;mg/ml$ respectively. 8. An optimal nucleic acid content of CHS-13 strain was observed in the medium containing 0.2% of yeast extract.

  • PDF

Development of the pH Inhibition Model Adapting Pseudo Toxic Concentration (CPT) Concept for Activated Sludge Process (의사독성농도 (CPT) 개념을 도입한 활성슬러지 공정 pH 저해 모델 개발)

  • Ko, Joo-Hyung;Jang, Won-Ho;Im, Jeong-Hoon;Woo, Hae-Jin;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2037-2046
    • /
    • 2000
  • It has been reported that the inhibition effect of pH on activated sludge follows noncompetitive inhibition kinetics. However. the noncompetitive inhibition kinetic equation can not be directly applied to pH inhibition because of the difficulty in quantification of pH in terms of inhibitor concentration. So, many empirical equations have been developed to describe the pH inhibition effect especially for acidic condition. In this research. the pseudo toxic concentration ($C_{PT}$) concept model to quantify pH inhibition effect on activated sludge was proposed and compared to other existing models. The $C_{PT}$ concept model can explain the reduction of the maximum specific growth rate (${\mu}_{max}$) caused by the pH inhibition more accurately than any other models, at a wide range of pH. The only model parameter. $K_I$ can be easily estimated by Lineweaver-Burk linearization method.

  • PDF

Isolation and Characterization of a Diesel-Degrading Bacterium, Gordonia sp. SD8 (디젤 분해 세균 Gordonia sp. SD8 분리 및 특성)

  • Hong, Sun-Hwa;Kim, Ji-Young;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.335-339
    • /
    • 2010
  • A diesel-degrading bacterium, Gordonia sp. SD8, was isolated from soil contaminated with petroleum, and its diesel degradation was characterized in a soil as well as a liquid culture system. SD8 could grow in the mineral salt medium supplemented with diesel as a sole carbon and energy source. The maximum specific growth rate ($0.67{\pm}0.05\;d^{-1}$) and diesel degradation rate ($1,727{\pm}145$ mg-TPH $L^{-1}\;d^{-1}$) of SD8 showed at 20,000 mg-TPH $L^{-1}$ and $30^{\circ}C$, and then this bacterium could degrade high strength of diesel of 40,000 mg-TPH $L^{-1}$. The residual diesel concentration in the inoculated soil with SD8 was 3,724 mg-TPH kg-dry $soil^{-1}$ after 17 days, whereas the diesel concentration in the non-inoculated soil was $8,150{\pm}755$ mg-TPH kg-dry $soil^{-1}$. These results indicate that Gordonia sp. SD8 can serve as a promising microbial resource for the bioremediaion of contaminated soil with petroleum hydrocarbons including diesel.

Nitrogen and Phosphorus Removal Characteristics of a New Biological Nutrient Removal Process with Pre-Denitrification by Pilot Scale and Computer Simulation Program (선단무산소조를 이용한 영양소제거공정(Bio-NET)의 질소·인 제거 특성)

  • Oh, Young-Khee;Oh, Sung-Min;Hwang, Yenug-Sang;Lee, Kung-Soo;Park, No-Yeon;Ko, Kwang-Baik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.121-132
    • /
    • 2000
  • This study is to investigate the performance of a new BNR process using predenitrification scheme focusing on nitrogen removal and the possibility of adapting a computer simulation scheme in BNR process development. By using a pre-denitrification basin, higher $COD/NO_3-N$ ratio could be sustained in this BNR process. The results of the investigation showed a SDNR value of 9.04mg/gMv/hr. In the anoxic tank, the average value of SPRR of 6.25mgP/gMv/hr was observed to be very sensitive to SCOD load of influents. By calibrating internal parameters (stoichiometric and kinetic parameters) of the simulation model, the results of simulation for various BNR processes gave good agreement with observed data. The major adjustment was given with three parameters, maximum specific growth rate of heterotrophic biomass, short chain fatty acid (SCFA) limit, and phosphorous release rate. With the series of simulations on varying operational conditions, the simulation by computer program can be a useful tool for process selection, and design and operation of municipal wastewater treatment plant.

  • PDF

Weed-Ecological Classification of the Collected Barnyardgrass [Echinochloa crus-galli(L.) Beauv.] in Korea - II. Classification of collected barnyardgrass in growth pattern by multivariate clustering (한국산(韓國産) 피[Echinochloa crus-galli (L.) Beauv.] 수집종(蒐集種)의 잡초생태학적(雜草生態學的) 분류(分類)에 관(關한) 연구(硏究) - 제(第)II보(報) 다변량(多變量) 해석법(解析法)에 의한 수집종(蒐集種) 피의 분류(分類))

  • Im, I.B.;Guh, J.O.;Lee, Y.M.
    • Korean Journal of Weed Science
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 1989
  • The seventeen barnyardgrass [Echinochloa crus-galli (L.) Beauv.] accessions, which were collected national-widely in 1986 and selected two times through 1987, were experimented at 1988. To identify the ecological properties of the collected accessions of native barnyardgrass species as a weed, the experiment was conducted with Wagner pots in size of I/500a and under PE film house. 1. Accessions were classified into 5 specific groups in plant type properties by use of data from plant height, number of maximum tillers, erectness, culm length and panicle type, among others. 2. As for species identification, they were clustered into 3 similar groups and 2 individual species by use of data from color, first-glumer type, and erectness. 3. Four groups were identified for elongational properties by plant height of 22 days old seedling, length of culm, panical, leaf length and width, and inter-node and spikelet, among others. 4. Properties on quanititative growth were classified into 4 groups and 1 individual accession corresponding to differential plant height of 22 days old seedling, length of culm, panical, inter-node, leaf-sheath, spikelet, first-glumes length, grain, number of tillers, spike, and grain weight. 5. Due to different daily increasing rate in seedling height, dry weight, number of tillers and ratio in dry weight to plant height, the growth rate properties were clustered into 4 groups and one individual accession. 6. Properties on seedling growth were classified into 4 groups by use of differential date in length and width of first-leaf, plant height, number of tillers, and dry weight of young and medium aged seedling. 7. Responding to heading date, the accessions were classified into 3 groups : temperative sensitive, medium, and short-day length sensitive types, respectively. 8. By integrating of all quanititative and attributable characters, the seventeen accessions were clustered into 4 groups and 2 individual accessions.

  • PDF

Predictive Modeling of Bacillus cereus on Carrot Treated with Slightly Acidic Electrolyzed Water and Ultrasonication at Various Storage Temperatures (미산성 차아염소산수와 초음파를 처리한 당근에서 저장 중 Bacillus cereus 균의 생육 예측모델)

  • Kim, Seon-Young;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1296-1303
    • /
    • 2014
  • This study was conducted to develop predictive models for the growth of Bacillus cereus on carrot treated with slightly acidic electrolyzed water (SAcEW) and ultrasonication (US) at different storage temperatures. In addition, the inactivation of B. cereus by US with SAcEW was investigated. US treatment with a frequency of 40 kHz and an acoustic energy density of 400 W/L at $40^{\circ}C$ for 3 min showed the maximum reduction of 2.87 log CFU/g B. cereus on carrot, while combined treatment of US (400 W/L, $40^{\circ}C$, 3 min) with SAcEW reached to 3.1 log CFU/g reduction. Growth data of B. cereus on carrot treated with SAcEW and US at different temperatures (4, 10, 15, 20, 25, 30, and $35^{\circ}C$) were collected and used to develop predictive models. The modified Gompertz model was found to be more suitable to describe the growth data. The specific growth rate (SGR) and lag time (LT) obtained from the modified Gompertz model were employed to establish the secondary models. The newly developed secondary models were validated using the root mean square error, bias factor, and accuracy factor. All results of these factors were in the acceptable range of values. After compared SGR and LT of B. cereus on carrot, the results showed that the growth of B. cereus on carrot treated with SAcEW and US was slower than that of single treatment. This result indicates that shelf life of carrot treated with SAcEW and US could be extended. The developed predictive models might also be used to assess the microbiological risk of B. cereus infection in carrot treated with SAcEW and US.

Development of a Predictive Model Describing the Growth of Staphylococcus aureus in Pyeonyuk marketed (시중 유통판매 중인 편육에서의 Staphylococcus aureus 성장예측모델 개발)

  • Kim, An-Na;Cho, Joon-Il;Son, Na-Ry;Choi, Won-Seok;Yoon, Sang-Hyun;Suh, Soo-Hwan;Kwak, Hyo-Sun;Joo, In-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.206-210
    • /
    • 2017
  • This study was performed to develope mathematical models for predicting growth kinetics of Staphylococcus aureus in the processed meat product, pyeonyuk. Growth patterns of S. aureus in pyeonyuk were determined at the storage temperatures of 4, 10, 20, and $37^{\circ}C$ respectively. The number of S. aureus in pyeonyuk increased at all the storage temperatures. The maximum specific growth rate (${\mu}_{max}$) and lag phase duration (LPD) values were calculated by Baranyi model. The ${\mu}_{max}$ values went up, while the LPD values decreased as the storage temperature increased from $4^{\circ}C$ to $37^{\circ}C$. Square root model and polynomial model were used to develop the secondary models for ${\mu}_{max}$ and LPD, respectively. Root Mean Square Error (RMSE) was used to evaluate the developed model and the fitness was determind to be 0.42. Therefore the developed predictive model was useful to predict the growth of S. aureus in pyeonyuk and it will help to prevent food-born disease by expanding for microbial sanitary management guide.

Alcohol Production by Extractive Fermentation in a Continuous Bioreactor (연속 생물반응기 안에서 유출 발효에 의한 알코올 생산)

  • 김재형;전순배이기영김동운
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.21-30
    • /
    • 1989
  • Lauryl alcohol was used as extracting solvent of ethanol, and its toxicity on the free cells or immobilized cells was tested. To increase ethanol productivity, extractive fermentation method combined with ethanol fermentation and ethanol recovery was applied to the immobilized batch and continuous fermenter. As the concentration of LaOH was increased, the lag phase became longer, but specific growth rate did not change greatly. And a cell entrapment technique could protect the yeast cells against both substrate inhibition and solvent toxicity. When the glucose concentration was 400 g/l and the LaOH/fermentation medium ratio was 4, total ethanol productivity increased with the enhancement of LaOH volume, and maximum productivity was 2.75 g/l.hr in the immobilized batch fermentation.

  • PDF

Isolation of $NH_4^+$-Tolerant Mutants of Actinobacillus succinogenes for Succinic Acid Production by Continuous Selection

  • Ye, Gui-Zi;Jiang, Min;Li, Jian;Chen, Ke-Quan;Xi, Yong-Lan;Liu, Shu-Wen;Wei, Ping;Ouyang, Ping-Kai
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1219-1225
    • /
    • 2010
  • Actinobacillus succinogenes, a representative succinicacid-producing microorganism, is seriously inhibited by ammonium ions, thereby hampering the industrial use of A. succinogenes with ammonium-ion-based materials as the pH controller. Therefore, this study isolated an ammonium-ion-tolerant mutant of A. succinogenes using a continuous-culture technique in which all the environmental factors, besides the stress (ammonium ions), were kept constant. Instead of operating the mutant-generating system as a nutrient-limited chemostat, it was used as a nutrient-unlimited system, allowing the cells to be continuously cultured at the maximum specific growth rate. The mutants were isolated on agar plates containing the acid-base indicator bromothymol blue and a high level of ammonium ions that would normally kill the parent strain by 100%. When cultured in anaerobic bottles with an ammonium ion concentration of 354 mmol/l, the mutant YZ0819 produced 40.21 g/l of succinic acid with a yield of 80.4%, whereas the parent strain NJ113 was unable to grow. When using $NH_4OH$ to buffer the culture pH in a 3.0 l stirredbioreactor, YZ0819 produced 35.15 g/l of succinic acid with a yield of 70.3%, which was 155% higher than that produced by NJ113. In addition, the morphology of YZ0819 changed in the fermentation broth, as the cells were aggregated from the beginning to the end of the fermentation. Therefore, these results indicate that YZ0819 can efficiently produce succinic acid when using $NH_4OH$ as the pH controller, and the formation of aggregates can be useful for transferring the cells from a cultivation medium for various industrial applications.

Comparison of Biomass Production of Spirulina (Arthrospira) platensis in Outdoor Culture Conditions Using Different Media by Urea Addition (실외 배양 조건에서 요소를 첨가한 배지 성분에 따른 Spirulina (Arthrospira) platensis의 성장 비교)

  • Lee, Dae-Won;Affan, MD Abu;Lee, Hyeon-Yong;Ma, Chae Woo;Park, Heung-Sik;Kwon, Moon-Sang;Kang, Do-Hyung
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.407-414
    • /
    • 2013
  • One of the most important challenges facing the Spirulina mass cultivation industry is to find a way to reduce the high production costs involved in production. Although the most commercial medium (Zarrouk's medium) for Spirulina cultivation is too expensive to use, it contains higher amount of $NaHCO_3$ (16.80 g $L^{-1}$), trace metals and vitamin solutions. The purpose of this study was to increase the efficiency of Spirulina platensis biomass production by developing a low-cost culture medium at an isolated tropical island such as Chuuk State, Federated States of Micronesia (FSM). This study set out to formulate a lowcost medium for the culture of S. platensis, by substituting nutrients of Zarrouk's medium using fertilizer- grade urea and soil extract with a different concentration of carbon source under natural weather condition. In order to select a low-cost culture medium of S. platensis, 10 culture media were prepared with different concentrations of nitrogen (urea and $NaNO_3$) and $NaHCO_3$. The highest maximum specific growth rate (${\mu}max$) and mass production were 0.50 $day^{-1}$ and 1.05 g $L^{-1}$ in modified medium ($NaHCO_3$ 7.50 g $L^{-1}$, urea 2.00 g $L^{-1}$ without $NaNO_3$) among all the synthesized media. Protein (56.14%) and carbohydrate (16.21%) concentrations of the lyophilized standard samples were estimated with highest concentration of glutamic acid (14.93%). This study revealed that the use of a low concentration of urea and $NaHCO_3$ with soil extract was an affordable medium for natural mass cultivation in the FSM.