• Title/Summary/Keyword: Maximum specific growth rate

Search Result 281, Processing Time 0.032 seconds

Nitrification process analysis by respirometry in a sequencing batch reactor (호흡률을 이용한 연속회분식반응조의 질산화 공정 해석)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • The respirometric technique has been used to analyze the nitrification process in a sequencing batch reactor(SBR) treating municipal wastewater. Especially the profile of the respiration rate very well expressed the reaction characteristics of nitrification. As the nitrification process required a significant amount of oxygen for nitrogen oxidation, the respiration rate due to nitrification was high. The maximum nitrification respiration rate, which was about $50mg\;O_2/L{\cdot}h$ under the period of sufficient nitrification, was related directly to the nitrification reaction rate and showed the nitrifiers activity. The growth rate of nitrifiers is the most critical parameter in the design of the biological nutrient removal systems. On the basis of nitrification kinetics, the maximum specific growth rate of nitrifiers in the SBR was estimated as $0.91d^{-1}$ at $20^{\circ}C$, and the active biomass of nitrifiers was calculated as 23 mg VSS/L and it was about 2% of total biomass.

Exo-Polysaccharide Production in Liquid Culture of Pleurotus ferulae

  • CHOI DU BOK;KANG SI HYUNG;SONG YON HO;KWUN KYU HYUK;JEONG KYOUNG JU;CHA WOL SUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.368-375
    • /
    • 2005
  • Batch cultures were carried out to optimize the exo-polysaccharide production by liquid cultures of Pleurotus ferulae. Among the various carbon sources, when $5\%$ of glucose was used, the maximum mycelial growth and exo-polysaccharide concentration reached were 8.78 g/l and 3.59 g/l, respectively. Yeast extract and polypeptone were identified as the most suitable nitrogen sources. In particular, when a mixture of $1\%$ of polypeptone and $0.8\%$ of yeast extract was used, 9.52 g/l of mycelial growth and 4.09 g/l of exo-polysaccharide were obtained. In the case of mineral sources, K$_2$HPO$_4$ and MgSO$_4$$\codt$7H$_2$0 were found to be the best mineral sources for mycelial growth and exo-polysaccharide production. Under the optimized culture conditions, the agitation speed and aeration were investigated for mycelial growth and exo­polysaccharide production in a jar fermentor. The maximum mycelial growth and exo-polysaccharide concentration at 1.5 vvm and 200 rpm obtained were 13.2 g/l and 4.95 g/l, respectively, after 10 days of culture, which were $76\%$ and $79\%$ higher than those of the basal medium. The specific growth rate was decreased with the increase of mycelial growth. However, the specific production rate of the exo-polysaccharide was proportionally increased with the specific growth rate. The proposed model profiles showed good agreement with the experimental results for the mycelial growth and exo-polysaccharide production. The specific production rate using the optimized medium was higher than that of basal medium.

High Density Culture of KA112 Hybridoma and Effect of Glucose Concentration on MAb Productivity (하이브리도마의 고농도 배양과 포도당 농도가 MAb 생산성에 미치는 영향)

  • 박상재;최차용
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.478-482
    • /
    • 1993
  • Perfusion culture was conducted in Celligen perfusion culture system using a self-constructed hybridoma cell and low serum medium. The culture system employed hollow fiber to separate cells from the culture broth. Maximum cell density of $2.1\times10^7$ ce11s/m1, 10 times higher than in batch culture, could be achieved. Concentration of monoclonal antibody (MAb) was 4 times higher and production rate at maximum feed rate was 9 times higher than in batch culture. Glucose concentration was very important for the cell growth and MAb production. When glucose concentration was below 1g/l, i. e. 0.5~0.9g/l, specific MAb production rate decreased but cell concentration still increased. As the glucose concentration goes above 1g/l, specific MAb production rate increased and remained at maximum value at more than 1.5g glucose/l. The maximum value of the specific Mab production rate was similar to that of batch culture.

  • PDF

Germination and Seedling Growth Affected by Seed Specific Gravity

  • Yun, Myoung-Hui;Shin, Jin-Chul;Yang, Woon-Ho;Son, Ji-Young;Kim, Jun-Hwan;Park, Geun-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.434-439
    • /
    • 2008
  • The amount of salt to make seed sorting solution of the specific gravity of 1.13 was reconsidered and determined as 3.8 kg salt in 18 L water, which is lower amount than currently used. Five rice cultivars were examined. Percent germination and seedling emergence were not similar. Seedling emergence rate of Japonica varieties, Nampyungbyeo and Daerypbyeo-1 were 87% and 95% under specific gravity of 1.13, respectively. Seedling emergence rate of Tongil type variety, Dasanbyeo was as high as 67% in specific gravity of 1.06. Seedling emergence rate of waxy rice, Hwasunchalbyeo and Aranghangchalbyeo were examined. Seedling emergence rate was 94% in both cultivars in specific gravity of 1.04. Seedling emergence rate was same in specific gravity of 1.08 which is generally used for selecting seed currently. Early growth (plant height, leaf number, and dry weight) were not significantly different by specific gravity within species. In all cultivars except waxy rice, highest seedling emergence rate was observed in specific gravity of 1.13 which is currently used for selection and decreased as specific gravity is lowed. However, considering total amount of seeds in each group of specific gravity, amount of seed in lower specific gravity group is relatively small and total seedling emergence rate within variety dose not show big difference. However, if seeds with low speicific gravity are produced due to the bad grain filling condition and consequently total seed content of low specific gravity increases, results will be differnt. Reduction in total growth and yield could occur. It will be important to comply with the seed sorting criterion of 1.13 for Japonica, 1.06 for Tongil, and 1.04 for waxy rice variety to ensure the maximum rice growth and yield.

Optimization of Switching Time from Growth to Product Formation for Maximum Productivity of Recombinant Escherichia coli Fermentation (유전자 재조합 대장균 발효의 최대 생산성을 위한 생육에서 제품 생성으로 전환시기의 최적화)

  • Anant Y. Patkar
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.394-400
    • /
    • 1990
  • Maximization of productivity of recombinant cell fermentations requires consideration of the inverse relationship between the host cell growth rate and product formation rate. The problem of maximizing a weighted performance index was solved by using optimal control theory for recombinant E. coli fermentation. Concentration of a growth inhibitor was used as a control variable to manipulate the specific growth rate, and consequently the cloned-gene expression rate. Using a simple unstructured model to describe the main characteristics of this system, theoretical analysis showed that the optimal control profile results in an initial high growth rate phase followed by a low growth rate and high product formation rate phase. Numerical calculations were done to determine optimal switching times from the growth to the production stage for two representative cases corresponding to different dependency of the product formation rate on the growth rate. For the case when product formation rate is sensitive to the specific growth rate, the optimized operation yields about 60% increase in the final product concentration compared with a simple batch fermentation.

  • PDF

Selection of Organic Carbon (Different Form of Acetate Compounds and Concentration) for Cultivation of Anabena under Mixotrophic Cultivation Mode (혼합영양 배양조건에서의 Anabena 배양을 위한 유기탄소(acetate 종류 및 농도) 선정 연구)

  • Hong, Kai;Gao, Siyuan;Lee, Taeyoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.73-78
    • /
    • 2018
  • The main objective of this study was to evaluate the effects of acetate on the cultivation of anabena under mixotrophic condition. Four different types of acetates were used for the anebena cultivation. Among them, ethyl acetate was found to be the most effective and the growth rates linearly increased as the amount of ethyl acetate increased. When 40 mM of ethyl acetate was used, the highest values of specific growth rate of $0.979day^{-1}$ and maximum biomass productivity of $0.293g\;L^{-1}\;d^{-1}$ were obtained. On the contrary, input of acetic acid and butyl acetate inhibited the growth of anabena. For aeration tests, 0.54 vvm was optimum for anabena cultivation. For a semi-continuous cultivation test, ethyl acetate was used after 0.54 vvm test was finished. Then, test continued under 0.54 vvm and 40 mM of ethyl acetate. Lower specific growth rate and maximum biomass productivity were obtained compared to those from batch cultivation tests. However, the greatest maximum concentration of 5.91 g/L was obtained during the semi-continuous cultivation test.

Effects of Water Temperature, Salinity and Irradiance on the Growth of the Harmful Algae Chattonella marina (Subrahmanyn) Hara et Chihara (Raphidophyceae) Isolated from Gamak Bay, Korea (가막만에서 분리한 유해성 침편모조류 Chattonella merina (Subrahmanyn) Hara et Chihara (Raphidophyceae)의 성장에 미치는 수온, 염분 및 빛의 영향)

  • Noh, Il-Hyeon;Yoon, Yang-Ho;Kim, Dae-Il;Oh, Seok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.487-494
    • /
    • 2006
  • The effects of water temperature, salinity and irradiance on the growth of harmful algae Chattonella marina isolated from Gamak Bay in South Sea, Korea were investigated. C. marina was able to grow in temperatures of $15-30^{\circ}C$ and salinities of 10-35 psu. Maximum specific growth rate (0.64/day) was observed with combination of $25^{\circ}C$ and 25 psu. Optimal growth (${\ge}70%$ of maximum specific growth rate) was obtained with all salinities of the above $20^{\circ}C$. This result indicated that C. marina is a stenothermal of the high water temperature and euryhaline organism. C. marina was did not grow at irradiance ${\le} 10{\mu}mol$ photons/($m^2\;s$). Photoinhibition did not occur at $300{\mu}mol$ photons/($m^2\;s$), which was the maximum irradiance used in this study. The irradiance-growth curve was described as ${\mu}=0.78(I-11.4)/(I+34.1)$ at $25^{\circ}C$ and 25 psu. The half-saturation photon flux density (PFD) ($K_s$) was $56.9{\mu}mol$ photons/($m^2\;s$) and compensation PFD ($I_c$) was $11.4{\mu}mol$ photons/($m^2\;s$). The result of the present study indicate that C. marina has advantage physiological characteristic to the interspecific competition at the embayment and costal areas of South and West Sea, Korea in summer.

Abnormal Behavior of Ordinary Heterotrophic Organism Active Biomass at Different Substrate/Microorganisms Ratios in Batch Test (회분식 실험 Substrate/Microorganisms 비에 따른 종속영양미생물의 특이거동 연구)

  • Lee, Byung-Joon;Wentzel, M.C.;Ekama, G.A.;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Batch test methods have developed for a long time to measure kinetic and stoichiometric parameters which are required to perform steady state design and mathematical modelling of activated sludge processes. However, at various So/Xo ratios, abnormal behaviors of ordinary heterotrophic organism in batch tests have been reported in many researches. Thus, in this research, abnormal behaviors of heterotrophs in batch tests were investigated at various So/Xo conditions by measuring and interpreting oxygen utilization rate. As So/Xo ratio increased, the calculated values of maximum specific growth rates, ${\mu}_{H,max}$ and $K_{MP,max}$, increased. However, at a certain point of So/Xo (around 10mgCOD/mgMLAVSS), ${\mu}_{H,max}$ and $K_{MP,max}$ values started to decrease. According to this observation, three prominent behaviours of heterotrophs were identified at various So/Xo conditions. (1) At low So/Xo region (below 5 mgCOD/mgMLAVSS), the oxygen utilization rate of heterotrophs in batch tests were almost stable and consequently yielded lower maximum specific growth rate. (2) At high So/Xo region (up to 5~10 mgCOD/mgMLAVSS), oxygen utilization rate incresed sharply with time and indicated more upward curvature than the predicted OUR with conventional activated sludge model, which consists of single hetetrotrophs group. Thus, in this region, competition model of two organisms, fast-grower and slow-grower, seemed to be appropriate. (3) At extremely high So/Xo region (over 10mgCOD/mgMLAVSS), significant oxygen utilization rate was still observed even after depletion of readily biodegradable COD. This might be caused by retarded utilization of intermediates which were generated by self inhibition mechanism in the process of RBCOD uptake.

Quantitative Physiology of T. reesei

  • Ryu, Deway;Ryu, W.S.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.115.2-115
    • /
    • 1979
  • By employing a two-stage continuous culture system, some of important physiological parameters involved in cellulase bicsynthesis have been evalua-ted with an ultimate objective of detigning an op-timally controlled tellulase process. Volumetric and specific cellulase productivities obtained were 90 IU/liter/hr and 8IU/g biomass/hr respectively. The maximum specific enzyme productivity observed was 14.8 IU/g hiomass/hr. The optimal dilution rate in the second stage which corresponded to the maximum enzyme productivity was 0.026-0.028 hr$^{-1}$ , and the specific growth rate in the second stage ihat suported maximum specific enzyme productivity was equal to orslightly less than zero. The maintenance coefficients deter-mined for oxygen and for carbon source are M$_{o}$=0.85mmmole/g biomass/hr and M$_{c}$=0.14 mmole hexose/g bio mass/hr respectively. The yield constants determined are; Y(x/o) =32.3g biomass/mole oxygen, Y (x/c) =1.1g bio-mass/g carbon or 0.44g biomass/g hexose, Y(x/n) = 19.6g biomass/g nitrogen for the enzyme produc-tion stage and 12.5g biomass/g nitrogen for the cell growth stage.e.e.

  • PDF

Optimization of Betacyanin Production by Red Beet (Beta vulgaris L.) Hairy Root Cultures. (Red Beet의 모상근 배양을 이용한 천연색소인 Betacyanin 생산의 최적화)

  • Kim, Sun-Hee;Kim, Sung-Hoon;Lee, Jo-No;An, Sang-Wook;Kim, Kwang-Soo;Hwnag, Baik;Lee, Hyeong-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.435-441
    • /
    • 1998
  • Optimal conditions for the production of natural color, betacyanin were investigated by varying light intensity, C/N ratio, concentrations of phosphate and kinds of elicitors. Batch cultivation was employed to characterize cell growth and betacyanin production of 32 days. The maximum specific growth rate, ${\mu}$$\sub$max/, was 0.3 (1/day) for batch cultivation. The maximum specific production rate, q$\^$max/$\sub$p/, was enhanced 0.11 (mg/g-cell/day) at 3 klux. A light intensity of 3 klux was shown to the best for both cell growth and betacyanin production. The maximum specific production rate was 0.125 (mg/g-cell/day) at 0.242 (1/day), the maximum specific growth rate. The dependence of specific growth rate on the light lintensity is fit to the photoinhibition model. The correlation between ${\mu}$ and q$\sub$p/ showed that the product formation parameters, ${\alpha}$ and ${\beta}$$\sub$p/ were 0.3756 (mg/cell) and 0.001 (mg/g-cell/day), respectively. The betacyanin production was partially cell growth related process, which is different from the production of a typical product in plant cell cultures. In C/N ratio experiment, high carbon concentration, 42.1 (w/w) improved cell growth rate while lower concentration, 31.6 (w/w) increased the betacyanin production rate. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.26 (1/day) and 0.075 (mg/g-cell/day), respectively. Beta vulgaris L. cells under 1.25 mM phosphate concentration produced 10.15 mg/L betacyanin with 13.46 (g-dry wt./L) of maximum cell density. The production of betacyanin was elongated by adding 0.1 ${\mu}$M of kinetin. This also increased the cell growth. Optimum culture conditions of light intensity, C/N, phosphate concentration were obtained as 5.5 klux, 27 (w/w), 1.25 mM, respectively by the response surface methodology. The maximum cell density, X$\sub$max/, and maximum production, P$\sub$max/, in optimized conditions were 16 (g-dry wt./L), 12.5 (mg/L) which were higher than 8 (g-dry wt./L), 4.48 (mg/L) in normal conditions. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.376 (1/day) and 0.134 (mg/g-cell/day) at the optimal condition. The overall results may be useful in scaling up hairy root cell culture system for commercial production of betacyanin.

  • PDF