• 제목/요약/키워드: Maximum sorption capacity

검색결과 68건 처리시간 0.026초

표면 개질된 메조기공실리카를 이용한 수중의 인 제거 (Surface modified mesoporous silica (SBA-15) for phosphate adsorbents in water)

  • 이승연;최재우;이상협;이해군;이기봉;홍석원
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.719-724
    • /
    • 2011
  • The excessive phosphate in water causes eutrophication which destroys water environment. In this study, mesoporous silica was synthesized and several functional groups were attached on it. Samples were tested to identify the ability to remove phosphate. The structures of synthesized materials were analyzed by X-ray diffractions (XRD), Fourier transform-infrared (FT-IR) and surface area analysis, Brunauer-Emmett-Teller (BET). To determine the maximum phosphate adsorption capacities and sorption rate, the equilibrium test and kinetic test was conducted. Among functionalized SBA-15 samples, pure SBA-15 didn't adsorb phosphate but Al-SBA-15 and Ti-SBA-15 showed good performances to remove phosphate. The maximum phosphate adsorption capacity of Al-SBA-15 was efficient compared to other adsorbents.

미생물 담체를 이용한 납 제거기작 모의를 위한 수학적 모델의 개발 (Development of a Mathematical Model for Simulating Removal Mechanisms of Heavy Metals using Biocarrier Beads)

  • 서한나;이민희;왕수균
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권4호
    • /
    • pp.8-18
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out and a mathematical model was developed to quantify the biosorption of Pb(II) by the biocarrier beads. A series of mass balance equations for representing mass transfer of metal sorbents in biocarrier beads and surrounding solution were established. Major model parameters such as external mass transfer coefficient and maximum sorption capacity, etc. were determined from pseudo-first-order kinetic models and Langmuir isotherm model based on kinetic and equilibrium experimental measurements. The model simulation displays reasonable representations of experimental data and implied that the proposed model can be applied to quantitative analysis on biosorption mechanisms by porous granular beads. The simulation results also confirms that the biosorption of heavy metal by the biocarrier beads largely depended on surface adsorption.

산업폐기물인 적니를 이용한 불소 제거 (Fluoride Removal from Aqueous Solutions using Industrial Waste Red Mud)

  • 엄병환;조성욱;강구;박성직
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.35-40
    • /
    • 2013
  • The present study was conducted to investigate the adsorption potential of red mud for fluoride removal. Different operation parameters such as the effect of contact time, initial concentration, pH, competing anions, seawater, adsorbent dose amount, and adsorbent mixture were studied. Nearly 3 hr was required to reach sorption equilibrium. Equilibrium sorption data were described well by Langmuir model and the maximum adsorption capacity of red mud was 5.28 mg/g. The fluoride adsorption at pH 3 was higher than in the pH range 5-9. The presence of anions such as sulfate, nitrate, phosphate, and bicarbonate had no significant effect on fluoride adsorption onto red mud. The fluoride removal by red mud was greater in seawater than deionized water, resulting from the presence of calcium and magnesium ion in seawater. The use of red mud alone was more effective for the removal of fluoride than mixing red mud with other industrial waste such as oyster shells, lime stone, and steel slag. This study showed that red mud has a potential application in the remediation of fluoride contaminated soil and groundwater.

Evaluation of Pb (II) and Cd (II) biosorption from aqueous solution by Ziziphus lotus stem powder (ZLSP)

  • Nosair El Yakoubi;Mounia Ennami;Naouar Ben Ali;Zineb Nejjar El Ansari;Mohammed L'bachir EL KBIACH;Loubna Bounab;Brahim El Bouzdoudi
    • Membrane and Water Treatment
    • /
    • 제15권2호
    • /
    • pp.89-98
    • /
    • 2024
  • The ability of Zizyphus lotus stem powder (ZLSP) to remove Pb (II) and Cd (II) ions from an aqueous solution was evaluated. The present phenomenon of biosorption was revealed to depend on pH, biosorbent dosage, temperature, initial ionic concentration, time of contact and biosorbent's particle size. The sorption process was exothermic (∆H°<0), and showing a strong Pb(II)/Cd(II)-ZLSP affinity (∆S°>0). Gibbs free energy data (∆G°<0, and decreases as temperature increase) reveals that the process studied is characterized by its feasibility and spontaneous nature. The best fits of the equilibrium data were obtained by the Temkin model and the Langmuir model. The maximum Pb(II)/Cd(II)-ZLSP biosorption capacities were 33.02 mg/g for Pb (II) and 20.73 mg/g for Cd (II). The pseudo-second order model was the most appropriate for fitting the kinetic data. The characterization of the biochemical groups essentially involved in the sorption phenomenon was made possible by FTIR spectral analysis. The capacity of ZLSP as an effective and ecofriendly biosorbent is confirmed through this study.

광미내 Zn의 탈착 특성과 지렁이에 대한 생이용성 (Desorption Characteristics and Bioavailability of Zn to Earthworm in Mine Tailings)

  • 오상화;신원식
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권4호
    • /
    • pp.38-52
    • /
    • 2011
  • Sorption and sequential desorption experiments were conducted for Zn using a natural soil (NS) in background status by aging (1, 30 and 100 days). The sorption isotherm showed that Zn had high sorption capacity but low sorption affinity in NS. Sequential desorption was biphasic with appreciable amount of sorbed Zn residing in the desorption-resistant fraction after several desorption steps. The biphasic desorption behavior of Zn was characterized by a biphasic desorption model that includes a linear term to represent labile or easily-desorbing fraction and a Langmuirian-type term to represent desorption-resistant fraction. The biphasic desorption model indicated that the size of the maximum capacity of desorption-resistant fraction ($q^{irr}_{max}$) increased with aging in NS. Desorption kinetics and desorption-resistance of Zn in the soils collected from mine tailings (MA, MB and MC collected from surface, subsurface soils and mine waste, respectively) were investigated and compared to the bioavailability to earthworm (Eisenia fetida). Desorption kinetic data of Zn were fitted to several desorption kinetic models. The ratio ($q_{e,d}/q_0$) of remaining Zn at desorption equilibrium ($q_{e,d}$) to initial sorbed concentration ($q_0$) was in the range of 0.53~0.90 in the mine tailings which was higher than that in NS, except MA. The sequential desorption from the mine tailings with 0.01M Na$NO_3$ and 0.01M $CaCl_2$ showed that appreciable amounts of Zn are resistant to desorption due to aging or sequestration. The SM&T (Standard Measurements and Testing Programme of European Union) analysis showed that the sum of oxidizable (Step III) and residual (Step IV) fractions of Zn was linearly related with its desorption-resistance ($q^{irr}_{max}$) determined by the sequential desorption with 0.01M Na$NO_3$ ($R^2$= 0.9998) and 0.01M $CaCl_2$ ($R^2$= 0.8580). The earthworm uptake of Zn and the desorbed amount of Zn ($q_{desorbed}$ = $q_0-q_{e,d}$) in MB soil were also linearly related ($R^2$ = 0.899). Our results implicate that the ecological risk assessment of heavy metals would be possible considering the relation between desorption behaviors and bioavailability to earthworm.

고온 처리된 납석을 흡착제로 이용한 용액상의 불소 제거 (Fluoride Removal from Aqueous Solution Using Thermally Treated Pyrophyllite as Adsorbent)

  • 김재현;송양민;김성배
    • 대한환경공학회지
    • /
    • 제35권2호
    • /
    • pp.131-136
    • /
    • 2013
  • 본 연구의 목적은 고온 처리된 납석을 흡착제로 이용하여 불소 제거를 연구하는 것이었다. 본 연구에서는 흡착제양, 반응시간, 초기불소농도 그리고 용액pH가 불소제거에 미치는 영향을 관찰하기 위하여 회분조건에서 흡착실험을 수행하였다. 실험에는 다양한 온도에서 열처리한 납석[무처리 (P-U), $400^{\circ}C$ (P-400), $600^{\circ}C$ (P-600)]을 사용하였다. 실험결과, 불소흡착능은 P-400 > P-U > P-600 순으로 나타났다. XRD 분석결과, P-U와 P-400은 석영, 디카이트, 엽납석으로 구성된 반면, P-600은 석영으로만 구성된 것으로 나타났다. BET 분석결과, 비표면적은 P-600 > P-400 > P-U 순으로 나타났다. 동역학적 실험결과, P-400에서의 불소흡착은 24시간 이내에 평형에 도달하였다. 평형흡착 실험결과, P-400의 최대 불소흡착능은 0.957 mg/g이었다. 또한, P-400에 의한 불소제거는 pH 4-10범위에서 용액 pH의 영향을 받지 않았지만, 강산성(pH < 4)과 강염기성(pH > 10) 조건에서는 불소제거가 크게 감소하였다. 본 연구에 의하면, 납석은 저가 흡착제로써 수용액상의 불소제거에 이용될 수 있을 것으로 판단된다.

Effect of Plant Fibre on the Solubility of Mineral Elements

  • Ibrahim, M.N.M.;Zemmelink, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권8호
    • /
    • pp.1277-1284
    • /
    • 1999
  • Eight feeds and their residues left after washing with tap water (water residue) or incubation in the rumen (rumen residues) were treated with hydrochloric acid, neutral detergent solution without EDTA (NDS) or both, and the release or sorption of minerals (Ca, Mg, P, Na, K, Cu and Zn) assessed. Six of the feeds were from Sri Lanka (Panicum maximum ecotype Guinea A, Glyricidia maculate, Artocarpus heterophyllus (jak leaves), untreated and urea-treated rice straw, and rice bran) and two from the Netherlands (maize silage and wheat straw). The initial concentration of mineral elements, the concentration of neutral detergent fibre (NDF) and the type of feed significantly influenced (p<0.01). The proportion of the mineral elements released or sorbed. In general, feeds with high NDF content (straws and guinea grass) sorbed Ca from tap water, or released less in the rumen, and within these feeds the extent of sorption varied with source of fibre. Acid or NDS treatment removed little of the sorbed Ca, but they removed much of the Mg from both water and rumen residues. Fibres of wheat straw and jak leaves showed an affinity for Mg in the rumen. All feeds and their water and rumen residues sorbed P and Na from NDS, and the extent of sorption varied with the initial concentrations of these elements and with the type of fibre. Acid treatment removed part of the sorbed Na, but not the P. The solubility of K was not affected by the content of NDF, the type of fibre or the initial concentration of K. All feeds and their residues, except for the rumen residues of rice bran sorbed Cu from tap water and in the rumen. The recovery of Cu in rumen residues declined from 353% to 147% after NDS treatment, and with some feeds (glyricidia and jak leaves) the recovery was below 100%. Acid treatment removed part of the Zn sorbed by the water and rumen residues, but the capacity of residues to retain Zn varied with the type of feed.

Mass transfer kinetics using two-site interface model for removal of Cr(VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents

  • Vasudevan, M.;Ajithkumar, P.S.;Singh, R.P.;Natarajan, N.
    • Environmental Engineering Research
    • /
    • 제21권2호
    • /
    • pp.152-163
    • /
    • 2016
  • Present study investigates the potential of cassava peel and rubber tree bark for the removal of Cr (VI) from aqueous solution. Removal efficiency of more than 99% was obtained during the kinetic adsorption experiments with dosage of 3.5 g/L for cassava peel and 8 g/L for rubber tree bark. By comparing popular isotherm models and kinetic models for evaluating the kinetics of mass transfer, it was observed that Redlich-Peterson model and Langmuir model fitted well ($R^2$ > 0.99) resulting in maximum adsorption capacity as 79.37 mg/g and 43.86 mg/g for cassava peel and rubber tree bark respectively. Validation of pseudo-second order model and Elovich model indicated the possibility of chemisorption being the rate limiting step. The multi-linearity in the diffusion model was further addressed using multi-sites models (two-site series interface (TSSI) and two-site parallel interface (TSPI) models). Considering the influence of interface properties on the kinetic nature of sorption, TSSI model resulted in low mass transfer rate (5% for cassava peel and 10% for rubber tree bark) compared to TSPI model. The study highlights the employability of two-site sorption model for simultaneous representation of different stages of kinetic sorption for finding the rate-limiting process, compared to the separate equilibrium and kinetic modeling attempts.

Isotherm, kinetic and thermodynamic studies of dye removal from wastewater solution using leach waste materials

  • DEN, Muhammed Kamil O;ONGAR, Sezen KUC UKC
    • Advances in environmental research
    • /
    • 제8권1호
    • /
    • pp.23-38
    • /
    • 2019
  • In this study, Malachite Green (MG) dye removal from synthetic wastewaters by adsorption process using raw boron enrichment waste (BEW) and it's modifications (with acid and ultrasound) were aimed. 81% MG removal was obtained by BEW at optimum equilibrium conditions (time: 40 min., dosage: 500 mg/dm3, pH: 5-6, speed: 200 rpm, 298 K). MG removal from wastewaters using acid modified boron enrichment waste (HBEW) was determined as 82% at optimum conditions (time: 20 min., dosage: 200 mg/dm3, pH: 10, speed: 200 rpm, 298 K). For ultrasound modified BEW (UBEW), the highest MG removal percent was achieved as 84% at optimum conditions (time: 30 min, dosage: 375 mg/ dm3, pH: 8, speed: 200 rpm, 298 K). The equilibrium data of Malachite Green was evaluated for BEW, HBEW and UBEW adsorbents by using sorption isotherms such as Langmuir, Freundlich and Temkin models, out of which Langmuir model (R2 = 0.971, 0.987 and 0.984) gave better correlation and maximum adsorption capacity was found to be 147.05, 434.78 and 192.30 mg/g, respectively. The adsorption kinetics followed the pseudo-second-order kinetic equation for sorption of MG onto wastes. A look at thermodynamic data reveals that natural sorption is spontaneous and endothermic because of free negative energy exchange and positive change in enthalpy, respectively. The results indicated that boron enrichment waste, and HCl and ultrasound-modified boron enrichment waste served as good alternative adsorbents in dye removal from wastewater.

소나무(Pinus densiflora) 목질을 이용한 수용액 중의 Cu(II) 흡착 (Adsorption of Cu(II) from Aqueous Solutions Using Pine (Pinus densiflora) Wood)

  • 김하나;박세근;양경민;김영관
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.195-202
    • /
    • 2007
  • Milled Korean pine (Pinus densiflora) wood was used to evaluate its adsorption capacity of Cu(II) ions from aqueous solution by running a series of batch experiments. Prior to the tests, the milled woods were pretreated with 1N NaOH, 1N $HNO_3$, and distilled water, respectively, to examine the effect of pretreatment. Within the tested pH range between 3 and 6, copper adsorption efficiency of NaOH-treated wood(96~99%) was superior to the $HNO_3$-treated wood(19~31%) and distilled water-treated wood(18~35%). The efficiency of copper removal by wood enhanced with increasing solution pH and reached a maximum copper ion uptake at pH 5~6. Adsorption behavior of copper onto both raw and $HNO_3$-treated woods was mainly attributed to interaction with carboxylic acid group. For NaOH-treated wood, carboxylate ion produced by hydrolysis or saponification was a major functional group responsible for Cu sorption. NaOH treatment of wood changed the ester and carboxylic acid groups into carboxylate group, whereas $HNO_3$ treatment did not affect the production of functional groups which could bind copper. A pseudo second-order kinetic model fitted well for the sorption of copper ion onto NaOH-treated wood. A batch isotherm test using NaOH-treated wood showed that equilibrium sorption data were better represented by the Langmuir model than the Freundlich model.

  • PDF