• 제목/요약/키워드: Maximum response acceleration

검색결과 220건 처리시간 0.024초

An evaluation of the seismic response of symmetric steel space buildings

  • Yon, Burak
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.399-412
    • /
    • 2016
  • This paper evaluates the seismic response of three dimensional steel space buildings using the spread plastic hinge approach. A numerical study was carried out in which a sample steel space building was selected for pushover analysis and incremental nonlinear dynamic time history analysis. For the nonlinear analysis, three earthquake acceleration records were selected to ensure compatibility with the design spectrum defined in the Turkish Earthquake Code. The interstorey drift, capacity curve, maximum responses and dynamic pushover curves of the building were obtained. The analysis results were compared and good correlation was obtained between the idealized dynamic analyses envelopes with and static pushover curves for the selected building. As a result to more accurately account response of steel buildings, dynamic pushover envelopes can be obtained and compared with static pushover curve of the building.

전자식 차동 제한장치를 이용한 후륜구동 차량의 횡방향 안정성 제어 (Lateral Stability Control for Rear Wheel Drive Vehicles Using Electronic Limited Slip Differential)

  • 차현수;이경수
    • 자동차안전학회지
    • /
    • 제13권3호
    • /
    • pp.6-12
    • /
    • 2021
  • This paper presents a lateral stability control for rear wheel drive (RWD) vehicles using electronic limited slip differentials (eLSD). The proposed eLSD controller is designed to increase the understeer characteristic by transferring torque from the outside to inside wheel. The proposed algorithm is devised to improve the lateral responses at the steady state and transient cornering. In the steady state response, the proposed algorithm can extend the region of linear cornering response and can increase the maximum limit of available lateral acceleration. In the transient response, the proposed controller can reduce the yaw rate overshoot by increasing the understeer characteristic. The proposed algorithm has been investigated via computer simulations. In the simulation results, the performance of the proposed controller is compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the vehicle lateral stability and handling performance.

Residual Vector를 이용한 시간이력해석의 잔여모드 응답 고려 방법 (Consideration of residual mode response in time history analysis using residual vector)

  • 변창호;이한걸;김정용
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.137-144
    • /
    • 2021
  • The mode superposition time history analysis method is commonly used in a seismic analysis. The maximum response in the time history analysis can be derived by combining the responses of individual modes. The residual mode response is the response of the modes which are not considered in the time history analysis. In this paper, the residual vector method to consider the residual mode response in the time history analysis is introduced and evaluated. Seismic analyses for a sample structure model and a reactor vessel model are performed to evaluate the residual vector method. The analysis results show that residual mode response is well calculated when the residual vector method is used. It is confirmed that the residual vector method is useful and acceptable to consider the residual mode response in a seismic analysis of the nuclear power plant equipment.

아웃리거 댐퍼시스템의 감쇠와 강성에 따른 고층 건물 풍응답 제어 성능 평가 (Performance Evaluation of Wind Response Control of High-Rise Buildings by Damping and Stiffness of Outrigger Damper System)

  • 박광섭;김윤태
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.41-48
    • /
    • 2018
  • Recently, the concept of an outrigger damper system with a damper added to the existing outrigger system has been developed and applied for dynamic response control of high-rise buildings. However, the study on the structural characteristics and design method of Outrigger damper system is in the early stages. In this study, a 50 story high - rise building was designed and an outrigger damper system with viscoelastic damper was applied for wind response control. The time history analysis was performed by using the kaimal spectrum to create an artificial wind load for a total of 1,000 seconds at 0.1 second intervals. Analysis of the top horizontal maximum displacement response and acceleration response shows that outrigger damper systems are up to 28.33% and 49.26% more effective than conventional outrigger systems, respectively. Also, it is confirmed that the increase of damping ratio of dampers is effective for dynamic response control. However, since increasing the damping capacity increases the economic burden, it is necessary to select the appropriate stiffness and damping value of the outrigger damper system.

Accurate Control Position of Belt Drives under Acceleration and Velocity Constraints

  • Jayawardene, T.S.S.;Nakamura, Masatoshi;Goto, Satoru
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.474-483
    • /
    • 2003
  • Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. Unfortunately, the flexible dynamics deteriorates the positioning accuracy. Therefore, there exists a trade-off between the simplicity of the control strategy to reject time varying disturbance caused by flexibility of the belt and precision in performance. Resonance of the system further leads to vibrations and poor accuracy in positioning. In this paper, accurate positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method was proven by experiments carried out with an actual belt driven system. The accuracy of the simulation study based on numerical methods was also verified with the analytical solutions derived.

Lateral earth pressure and bending moment on sheet pile walls due to uniform surcharge

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.71-83
    • /
    • 2020
  • Cantilever sheet pile walls are subjected to surcharge loading located on the backfill soil and at different distances from the top of the wall. The response of cantilever sheet pile walls to surcharge loadings at varying distances under seismic conditions is scarce in literature. In the present study, the influence of uniform surcharge load on cantilever sheet pile wall at varying distances from the top of the wall under seismic conditions are analyzed using finite difference based computer program. The results of the numerical analysis are presented in non-dimensional form like variation of bending moment and horizontal earth pressure along the depth of the sheet pile walls. The numerical analysis has been conducted at different magnitudes of horizontal seismic acceleration coefficient and vertical seismic acceleration coefficients by varying the magnitude and position of uniform surcharge from the top of the wall for different embedded depths and types of soil. The parametric study is conducted with different embedded depth of sheet pile walls, magnitude of surcharge on the top of the wall and at a distance from the top of the wall for different angles of internal friction. It is observed that the maximum bending moment increases and more mobilization of earth pressure takes place with increase in horizontal seismic acceleration coefficients, magnitude of uniform surcharge, embedded depth and decrease in the distance of surcharge from the top of the wall in loose sand.

선박 종류에 따른 내항성능 평가에 관한 연구 (A Study on the Evaluation of Seakeeping Performance with Ship Types)

  • 김순갑;박문수;공길영
    • 한국항해학회지
    • /
    • 제18권2호
    • /
    • pp.19-40
    • /
    • 1994
  • Several factors can be chosen for evaluating seakeeping performance, such as deck wetness, propeller racing, slamming, rolling, vertical acceleration and vertical bending moment, in consi-deration of the safety of human being, cargo and ship. In fact, there are few developments for an evalua-tion method of seakeepting performance correponding with each ship's characteristics. The purpose of this paper is to develop an quantitative evaluation method of seakeeping performance according to ship types. The scope and the method of this study are as follow. (1) Obtain each response amplitude of ship's motion in waves by Ordinary Strip Method and apply it to short-crested, irregular wave for random process of the factors on seakeeping performance. (2) Define the evaluation index, the dangerousness, the maximum dangerousness and the evaluation diagram. (3) Figure out the different characteristics according to ship types by computer simulation of evaluating seakeeping performance. (4) Adopt vertical acceleration and one of rolling or lateral acceleration as the factors on seakeeping performance by clarifying the correlation of stochastic process. This study developed an evaluation method coincident with each ship's characteristics, and suggested a device for application to actual ship. This method might be useful in developing the practical system of seakeeping performance in accordance with ship types. The ship models for computer simulation are 175m container ship types, 93m tranning ship HANARA as passenger ship type, 259m bulk-carrier type and 164m pure car-carrier type.

  • PDF

대학 기숙사 건물의 안전성 및 사용성 평가 연구 (A Study on the Safety and Usability of University Dormitory Buildings)

  • 채경훈;허석재;허무원
    • 교육시설 논문지
    • /
    • 제26권2호
    • /
    • pp.3-10
    • /
    • 2019
  • This study evaluated the vibration use and safety of students living in the dormitories on the 12th and 14th floors by feeling uncomfortable. The measurement method was to measure the acceleration due to free vibration and single - person walking. The slab stiffness was then calculated, and the usability and safety were compared according to international standards. The natural frequency of the slab was 6.8 Hz. The natural frequency of a typical slab is around 15Hz. Therefore, the evaluation slab is judged as a flexible floor structure. It is considered that there is a high possibility of resonance in the middle of daily life because of low natural frequency and near harmonic component of walking vibration. As a result, the RMS acceleration level is within the tolerance range defined by ISO 10137 code, but the 13th floor exceeds the reference limit, so that a sensitive person could detect the vibration somewhat in the lying position.

Seismic behavior of the shallow clayey basins subjected to obliquely incident wave

  • Khanbabazadeh, Hadi;Iyisan, Recep;Ozaslan, Bilal
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.183-195
    • /
    • 2022
  • Under the effects of the near-field earthquakes, the incident angle of the incoming wave could be different. In this study, the influences of some parameters such as incident angle, basin edge, peak ground acceleration level of the bedrock motion as well as different clay types with different consistency on the amplification behavior of the shallow basins are investigated. To attain this goal, the numerical analyses of the basins filled with three different clay types are performed using a fully nonlinear method. The two dimensional models of the basins are subjected to a set of strong ground motions with different peak ground acceleration levels and three different incident angles of 30◦, 45◦ and 90◦ with respect to the horizontal axes. The results show the dominant effect of the obliquely subjected waves at most cases. The higher effect of the 45◦ incident angle on the basin response was concluded. In the other part of this study, the spectral amplification curves of the surface points were compared. It was seen that the maximum spectral amplification of different surface points occurs at different periods. Also, it is affected by the increase in the peak acceleration level of the incoming motions.

변압기의 내진성능 향상을 위한 마찰진자 면진장치의 시험 연구 (Experimental Study of Friction Pendulum System to Improve the Seismic Capacity of Transformer)

  • 장정범;김정기;황경민;함경원;박진완;이찬욱
    • 한국지진공학회논문집
    • /
    • 제12권2호
    • /
    • pp.1-8
    • /
    • 2008
  • 본 연구에서는 전력설비 중 그 중요도가 가장 큰 변압기를 대상으로, 지진 발생 시 변압기의 파손을 방지하기 위하여 마찰진자 면진장치를 개발하고, 진동대시험을 통하여 그에 대한 내진성능을 입증하였다. 본 연구에서 개발한 마찰진자 면진장치에 대해 압축재하시험 및 마찰시험을 수행한 결과, 변압기의 면진장치로서 적용 가능한 것으로 나타났으며, 특히 변압기 축소모형을 대상으로 진동시험대에 의한 내진성능시험을 수행한 결과, 기존의 일반 고정기초형식보다 변압기 기초부의 최대 응답가속도는 약30%, 부싱 상단의 최대 응답가속도는 약 59% 감소하였다. 또한, 마찰진자 면진장치 설치 후, 변압기의 고유진동수가 약 82% 감소하며 장주기로 이동함을 확인할 수 있었다. 이와 같이 변압기에 마찰진자 면진장치를 적용하는 경우, 지진으로 인한 변압기의 파손을 효과적으로 방지할 수 있을 것으로 판단된다.