• 제목/요약/키워드: Maximum removal

검색결과 1,138건 처리시간 0.032초

Separation of cadmium and chromium heavy metals from industrial wastewater by using Ni-Zn nanoferrites

  • Thakur, Atul;Punia, Pinki;Dhar, Rakesh;Aggarwal, R.K.;Thakur, Preeti
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.457-465
    • /
    • 2022
  • The potentials of NixZn1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanoadsorbents were investigated for removal of Cd and Cr from contaminated water from an electroplating industry in Himachal Pradesh, India. Optimal values were recorded under batch adsorption experiments performed to remove dissolved heavy metal ions from industrial wastewater. The specific surface area (SSA) of nanoadsorbents perceived to vary in a range 35.75-45.29 cm2/g and was calculated from the XRD data. The influence of two operating parameters, contact time and dopant (Ni) concentration was also investigated at pH ~7 with optimum dosage. Kinetic studies were conducted within a time range of 2-10 min with rapid adsorption of cadmium and chromium ions onto Ni0.2Zn0.8Fe2O4 nanoadsorbents. Pseudo-second-order kinetic model was observed to be well fitted with the adsorption data that confirmed the only existence of chemisorption throughout the adsorption process. The maximum adsorption efficiency values observed for Cd and Cr were 51.4 mg/g and 40.12 mg/g, respectively for different compositions of prepared series of nanoadsorbents. The removal percentage of Cd and Cr was found to vary in a range of 47.7%-95.25% and 21%-50% respectively. The prepared series of nanoferrite found to be suitable enough for adsorption of both heavy metal ions.

층층나무와 신갈나무 폐바이오매스를 활용한 수용액 중 납 제거 효율 및 기작 (Efficiency and Mechanism of Pb(II) Removal from Aqueous Solutions Using Cornus controversa and Quercus mongolica Biomass Waste)

  • 최시영;정석순;양재의;김혁수;조준형
    • 한국환경농학회지
    • /
    • 제40권4호
    • /
    • pp.239-247
    • /
    • 2021
  • BACKGROUND: Enormous amounts of the wood biomass wastes have been produced through various wood processing. This study characterizes the surface characteristics of biomass powders of Cornus controversa (CC) and Quercus mongolica (QM) and investigates their removal efficiency and mechanism for Pb (II) in aqueous solution on which to base potential recycling alternative of the wood biomass. METHODS AND RESULTS: Batch experiments were conducted under different conditions of Pb concentrations, temperatures, time and solid/solution ratios. Adsorption isotherm of Pb by CC and QM biomass was explained significantly by the Langmuir model, indicating Pb was likely adsorbed on the monolayer of the surfaces. The adsorption kinetics were fitted significantly to the double first-order model consisting of rapid and slow steps. The respective rate constants (k1) of CC and QM for the rapid adsorption kinetic steps were 0.051 and 0.177 min-1, and most of the sorption reactions proceeded rapidly within 6-20 minutes. The maximum adsorption quantities (qmax) of Pb were 17.25 and 23.47 mg/g for CC and QM, respectively. Thermodynamic parameters revealed that adsorption of Pb on the biomass of CC and QM was a spontaneous endothermic reaction. CONCLUSION(S): Results demonstrate that biomass wastes of CC and QM can be used as Pb adsorbents judging from adsorption isotherm, kinetics, and thermodynamic parameters.

Identification of bacteria isolated from rockworm viscera and application of isolated bacteria to shrimp aquaculture wastewater treatment

  • Ja Young Cho;Kyoung Sook Cho;Chang Hoon Kim;Joong Kyun Kim
    • 환경생물
    • /
    • 제41권2호
    • /
    • pp.167-178
    • /
    • 2023
  • Large amounts of waste and wastewater from aquaculture have negatively impacted ecosystems. Among them, shrimp aquaculture wastewater contains large amounts of nitrogen contaminants derived from feed residues in an aerobic environment. This study isolated candidate strains from adult rockworms to treat shrimp aquaculture wastewater (SAW) in an aerobic environment. Among 87 strains isolated, 25 grew well at the same temperature as the shrimp aquaculture with excellent polymer degradation ability (>0.5 cm clear zone). Six isolates (strains AL1, AL4, AL5, AL6, LA10, and PR15) were finally selected after combining strains with excellent polymer degradation ability without antagonism. 16S rRNA sequencing analysis revealed that strains AL1, AL4, AL5, AL6, LA10, and PR15 were closely related to Bacillus paramycoides, Bacillus pumilus, Stenotrophomonas rhizophila, Bacillus paranthracis, Bacillus paranthracis, and Micrococcus luteus, respectively. When these six isolates were applied to SAW, they reached a maximum cell viability of 2.06×105 CFU mL-1. Their chemical oxygen demand (CODCr) and total nitrogen(TN) removal rates for 12h were 51.0% and 44.6%, respectively, when the CODCr/TN ratio was approximately 10.0. Considering these removal rates achieved in this study under batch conditions, these six isolates could be used for aerobic denitrification. Consequently, these six isolates from rockworms are good candidates that can be applied to the field of aquaculture wastewater treatment.

Fe-Nanoparticle Amalgamation Using Lagenaria siceraria Leaf Aqueous Extract with Focus on Dye Removal and Antibacterial Efficacy

  • Kirti;Suantak Kamsonlian;Vishnu Agarwal;Ankur Gaur;Jin-Won Park
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.287-295
    • /
    • 2023
  • Iron nanoparticles (Fe-NPs) were synthesized employing Lagenaria siceraria (LS) leaf aqueous extract as a reducing and capping medium to remove methylene blue (MB) dye and have antibacterial properties against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus). The formation of LS-Fe-NPs (Lagenaria-siceraria-iron-nanoparticles) was confirmed by a change in color from pale yellow to dark brown. Characterization techniques, such as particle size analysis (PSA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), were employed to prove nano spherical particles of size range between 80-100 nm. Phytochemicals and the presence of iron in LS-Fe-NPs nanoparticles were proved by UV-visible spectrophotometry. Further, Fourier transform infrared spectroscopy (FTIR) analysis results confirmed the existence of bioactive molecules in the plants. The magnetic property was analyzed using a vibrating sample magnetometer (VSM), which displayed that the synthesized nanoparticles were superparamagnetic and exhibiting a saturation magnetization of 12.5 emu/g. Synthesized magnetic nanoparticles were used in methylene blue (MB) dye removal through adsorption. About 83% of 100 mg/L MB dye was removed within 120 min at pH 6 with a maximum adsorption capacity of 246.8 mg/g. Antibacterial efficacy of LS-Fe-NPs was screened against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus), respectively, and found that LS-Fe-NPs were effective against Staphylococcus aureus.

AMR-WB 음성 부호화기를 이용한 TTS 데이터베이스의 효율적인 압축 기법 (Efficient TTS Database Compression Based on AMR-WB Speech Coder)

  • 임종욱;김기출;김경선;이항섭;박혜영;김무영
    • 한국음향학회지
    • /
    • 제28권3호
    • /
    • pp.290-297
    • /
    • 2009
  • 본 논문에서는 효율적으로 Text-To-Speech (TTS) 데이터베이스를 압축하기 위해서 개선된 adaptive multi-rate wideband (AMR-WB) 음성 부호화 알고리즘을 제안하고자 한다. 제안된 알고리즘은 불필요한 common bit-stream (CBS)을 제거하고, 파라미터의 델타 코딩 방식과 특정 화자에 종속적인 Huffman coding을 접목하여 음질 저하 없이 비트율을 낮추고자 하였다. 또한, 최소한의 음질 손실로 최대의 비트율 개선 효과를 볼 수 있는 손실 압축 방식도 제안하였다. 기존의 12.65 kbit/s AMR-WB 코덱에 CBS 제거를 포함한 무손실 압축 방식을 적용한 결과 음질 저하 없이 최대 12.40%의 비트율 개선 효과를 나타냈다. 또한, 손실 압축방식에서는 20.00% 비트율 개선 시 PBSQ로 0.12 정도의 음질 저하가 발생했다.

Adsorption process efficiency of activated carbon from date pits in removing pollutants from dye wastewater

  • A. Ahsan;I.K. Erabee;F.B. Nazrul;M. Imteaz;M.M. El-Sergany;S. Shams;Md. Shafiquzzaman
    • Membrane and Water Treatment
    • /
    • 제14권4호
    • /
    • pp.163-173
    • /
    • 2023
  • The presence of high amounts of organic and inorganic contaminants in textile wastewater is a major environmental concern. Therefore, the treatment of textile wastewater is an urgent issue to save the aquatic environment. The disposal of large quantities of untreated textile wastewater into inland water bodies can cause serious water pollution. In this study, synthetic dye wastewater samples were prepared using orange dye in the laboratory. The synthetic samples were then treated by a batch adsorption process using the prepared activated carbon (AC) from date pits. The wastewater parameters studied were the pH, total dissolved solids (TDS), total suspended solids (TSS), electrical conductivity (EC) and salinity. The activated adsorption process showed that the maximum removal efficiencies of electric conductivity (EC), salinity, TDS and TSS were 65%, 92%, 89% and 90%, respectively. The removal efficiencies were proportional to the increase in contact time (30-120 min) and AC adsorbent dose (1, 3 and 5 g/L). The adsorption profile indicates that 5 g/L of adsorbent delivers better results for TDS, EC, TSS and salinity at contact time of 120 min. The adsorption characteristics are better suited to the pseudo-second-order kinetic model than to the pseudo-first-order kinetic model. The Langmuir and Freundlich isotherms were well suited for describing the adsorption or contact behavior of EC and TSS within the studied system.

필름 이송을 위한 진공 롤 외통의 정밀가공 공정개발 (Development of a precision machining process for the outer cylinder of vacuum roll for film transfer)

  • 김의중;이호상
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.1-8
    • /
    • 2024
  • Unlike the roll-to-roll process that uses a steel roll and a nip roll, a vacuum roll can hold and transfer a thin film using a single roll. To precisely manufacture a vacuum roll, a thin outer cylinder must be machined, which is assembled on the outside of the roll and contacts the film via vacuum pressure. In this study, the effects of jaw width and chucking force on the deformation of the outer cylinder during the turning process were investigated using analysis, and a precision machining and burr removal process was developed. The deformation of the outer cylinder decreased almost linearly with increasing jaw width and increased with higher chucking force and larger cylinder diameter. Additionally, the deflection due to the weight of the outer cylinder was approximately three times greater than that caused by film tension. For the machined outer cylinder, a burr removal experiment was conducted, and concentricity and cylindricity were measured. Using a device that removes burrs by rotating a wheel connected to the main shaft at high speed, it was found that burrs generated on the inner diameter could be removed very efficiently. On the vacuum side, the concentricity errors of the inner and outer diameters were 0.015 mm and 0.014 mm, respectively, and on the opposite side, they were 0.006 mm and 0.010 mm, respectively. Additionally, the measurement of Total Indicator Runout (TIR) according to the angle showed that the maximum cylindricity of the outer and inner diameters was 0.02 mm and 0.025 mm, respectively. Finally, through burr-height measurement at the hole boundary, it was found that the heights were within 0.05 mm.

Application of nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM-PAN) for the removal of Co2+, Sr2+ and Cs+ from radioactive wastewater

  • Md Abdullah Al Masud;Won Sik Shin
    • Membrane and Water Treatment
    • /
    • 제15권2호
    • /
    • pp.67-78
    • /
    • 2024
  • In this study, a nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM-PAN) composite was synthesized and used for the sorptive removal of Co2+, Sr2+, and Cs+ Cs+ in radioactive laundry wastewater. Single- and multi-solute competitive sorptions onto NM-PAN were investigated. The Freundlich (Fr), Langmuir (Lang), Kargi-Ozmıhci (K-O), Koble-Corrigan (K-C), and Langmuir-Freundlich (Lang-Fr) models satisfactorily predicted all the single sorption data. The sorption isotherms were nonlinearly favorable (Freundlich coefficient, NF = 0.385-0.426). Cs+ has the highest maximum sorption capacity (qmL = 0.855 mmol g-1) for NM-PAN compared to Co2+ and Sr2+, wherein the primary mechanism was the physical process (mainly ion-exchange). The competition between the metal ions in the binary and ternary systems reduced the respective sorption capacities. Binary and ternary sorption models, such as the ideal adsorbed solution theory (IAST) model coupled with single sorption models of IAST-Fr, IAST-K-O, IAST-K-C and IAST-Lang-Fr, were fitted to the experimental data; among these, the IAST-Freundlich model showed the most satisfactory prediction for the binary and ternary systems. The presence of cationic surfactants highly affected the sorption on NM-PAN due to the increase in distribution coefficients (Kd) of Co2+ and Cs+.

송풍량이 음식물쓰레기 발효건조에 미치는 영향 (Effects of Air-flow Rate on Bio-drying of Food waste)

  • 유정숙;윤영만
    • 유기물자원화
    • /
    • 제26권2호
    • /
    • pp.65-73
    • /
    • 2018
  • 본 연구는 음식물쓰레기의 발효건조를 위한 최적 운전조건을 도출하기 위하여 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$의 송풍조건에서 발효건조 회분식 반응기를 20일간 운전하였으며, Modified Gompertz 모델을 이용하여 발효건조 기간 중 반응기내에서의 유기물 분해반응속도를 분석하였다. 유기물 분해 반응속도 분석에서 최대 유기물 분해량 (P)은 송풍량 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$에서 각각 2.31, 2.52, 2.27, 1.88 kg이었으며, 최대 유기물 분해속도 ($R_m$)는 송풍량 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$에서 각각 0.33, 0.45, 0.28, 0.18 kg/day를 보여 송풍량 $1.00L/min{\cdot}kg$에서 우수한 유기물 분해효율을 보였다. 발효건조 반응기의 지체성장시간 (${\lambda}$)은 송풍량 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$에서 각각 2.10, 1.48, 1.15, 1.06 일로 나타나 $0.75L/min{\cdot}kg$의 적은 송풍조건에서 가장 긴 지체성장시간을 보여 송풍량의 증가는 지체성장시간을 단축시키는 것으로 나타났다. 음식물쓰레기 발효건조 반응기의 운전에서 수분 제거율은 발효건조 반응기 운전 초기에서 중기로 갈수록 송풍량 증가와 함께 증가하다가 발효건조 반응기 운전 말기에는 송풍량 $1.00L/min{\cdot}kg$에서 가장 높은 수분 제거율을 보여 발효건조의 최적 송풍조건은 $1.00L/min{\cdot}kg$으로 나타났다.

국내 식품 중 유기인계 잔류농약의 위해성 평가 (Reduction Factors and Risk Assessment of Organophosphorus Pesticides in Korean Foods)

  • 이미경;이서래
    • 한국식품과학회지
    • /
    • 제29권2호
    • /
    • pp.240-248
    • /
    • 1997
  • 유기인계 농약의 조리 및 가공에 의한 제거율 데이타를 총정리한 결과 식품의 수세에 의해서 평균 45%, 세제에 의한 세척에 의해 56%, 과일의 껍질 벗기기에 의해 91%, 채소의 데치기 및 삶기에 의해 51%, 곡류의 도정에 의해 76%, 가공에 의해 60%가 제거되었다. 한국인의 식품 섭취량과 잔류허용기준에 의하여 농약의 이론적 최대섭취량(TMDI)을 산정한 결과, 조사된 11가지 농약중 4가지가 1인당 1일 섭취허용량(ADI)을 초과하는 것으로 나타났다. 식품 섭취량과 잔류농약 모니터링 데이터에 의하여 추정섭취량(EDI)을 산정한 결과, 유기인계 농약의 독성을 부가적(additive effect)인 것으로 가정한 ADI 대비율은 17.2%로 나타났다. 개별 농약성분의 ADI 대비율은 diazinon 6.1%, fenthion 5.8%, fenitrotion 3.3%로 나타났고 그 이외의 농약은 매우 낮게 나타났다. EDI에 감소계수를 감안한 결과 유기인계 농약성분은 조리 및 가공에 의해 50% 이상이 제거되는 것으로 판단된다. 결론적으로 유기인계 농약 전체에 대해 한국인은 ADI의 23% 수준에서 노출되고 있으며 이러한 수준은 그 위해성이 문제되지는 않지만 체계적인 위해평가를 시도해야 할 때라고 판단된다.

  • PDF