• Title/Summary/Keyword: Maximum power point tracker

Search Result 45, Processing Time 0.023 seconds

Analysis of analog MPPT Algorithms for Low cost Photovoltaic System (저가형 태양광 발전시스템을 위한 아날로그 MPPT 알고리즘의 특성 해석)

  • Kim Han-Goo;Lee Sang-Yong;Choi Moon-Gyu;Kim Hong-Sung;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, Simple and inexpensive analog maximum power point tracker (MPPT) algorithm for photovoltaic power system and low power system of doesn't use digital signal processor (DSP). The control circuit is composed such that the actual current and voltage are sensed directly from the PV array. These two signals are then multiplied by a single-chip multiplier. The multiplier output go through different time constants genesis pulse width modulated to switch. Finally those were verified through simulation.

  • PDF

Robust maximum power point tracker using sliding mode controller for the single-stage grid-connected photovoltaic system (슬라이딩 모드 제어기를 사용한 계통연계형 태양광 발전시스템의 강인한 최대전력점 제어기 설계)

  • Kim, Il-Song;Park, Jin-Sik;Jung, Sin-Myung;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.340-342
    • /
    • 2005
  • A sliding mode controller for the grid-connected photovoltaic system has been presented. This controller is constructed from the time-varying sliding surface In order to control the sinusoidal inductor current and solar array power simultaneously. The proposed controller can achieve the tight regulation of current and power under the parameter variation environment.

  • PDF

State observer design for noise reduction and state estimation in the photovoltaic power generation system (태양광 발전 시스템의 노이즈 감소와 상태추정을 위한 상태관측기 설계)

  • Kim, Il-Song
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.369-371
    • /
    • 2007
  • Due to the measurement noise or system noise, the performance of photovoltaic power generation system can be degraded. If this noise is contained in the solar array voltage measurement signal, the correct operation of the maximum power point tracker can not be guaranteed. The application of the extended Kalman filter to the photovoltaic system can obtain enhanced states estimation result. The Kalman filter provides a recursive solution to optimally estimate from random noise signals. Additionally, as a consequence of Kalman filter, the unmeasurable state such as inductor current can be estimated without current sensor. The methods for system modeling and extended Kalman filter design are presented and the experimental results verify the validity of the proposed system.

  • PDF

High Power Density and Low Cost Photovoltaic Power Conditioning System with Energy Storage System (에너지 저장장치를 갖는 고 전력밀도 및 저가격형 태양광 인버터 시스템)

  • Keum, Moon-Hwan;Jang, Du-Hee;Hong, Sung-Soo;Han, Sang-Kyoo;SaKong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.587-593
    • /
    • 2011
  • A new high power density and low cost Photovoltaic Power Conditioning System (PV PCS) with energy storage system is proposed. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and battery charger/discharger. Despite of the reduced power stage, the proposed system can achieve the same performances of maximum power point tracking and battery charging/discharging as the conventional system. Moreover, the high voltage stress across the link-capacitor can be relieved through the series-connected link-capacitor with the battery. Therefore, a large number of series/parallel-connected link-capacitors can be reduced by 4-times. Especially, when the utility power failure happens, both photovoltaic and battery energies can be supplied to the load with only one power stage. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

OF-LED illuminated Display Board System for Energy Saying (OF-LED를 이용한 에너지 절약형 광고 조명 시스템)

  • Lee S. R.;Jeon C. H.;Lee S. W.;Lee E. C.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.851-854
    • /
    • 2004
  • This paper studies Optical Fiber(OF) - LED illuminated display board system for energy saving. The OF-LED illuminated display board system has PV modules, batteries, and charge & discharge system, and dynamic full color display controller. Both maximum power point tracker (MPPT) and constant current & constant current controls (CCVC) are used In govern the charging system. It can be improve the charging efficiency of battery. The objective of this thesis paper is to build advertisement lighting system with OF-LED in to charge a 12-volts lead acid battery by using a field wired PV array. We saved the maintenance cost and developed of advertisement effectiveness. To verify the proposed OF-LED illuminated display board system for energy saving, the detail simulation and experiment results indicate that operating characteristics are verified by experiment with a laboratory prototype in this paper.

  • PDF

High Efficiency Lossless Snubber for Photovoltaic Maximum Power Point Tracker (태양광 최대 전력 추종기를 위한 고효율 무손실 스너버)

  • Jang, Du-Hee;Jung, Young-Jin;Keum, Moon-Hwan;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.222-223
    • /
    • 2012
  • 본 논문에서는 태양광 인버터용 최대전력점 추종기의 고 효율화를 위한 새로운 구조의 무손실 스너버를 제안한다. 제안된 무손실 스너버는 보조 인덕터 1개, 스너버 캐패시터 2개, 다이오드 2개만으로 구성되어 시스템 부피가 크게 증가하지 않는다. 또한 제안된 무손실 스너버는 보조 인덕터 및 스너버 캐패시터로 인하여 스위치의 턴 온 및 턴 오프 시 소프트 스위칭이 가능하며, 출력 다이오드의 역회복 특성에 의한 역전류 현상 또한 크게 개선할 수 있다. 또한 스너버 캐패시터에 저장된 에너지는 공진을 통하여 모두 출력측으로 회생되므로 효율이 우수한 장점을 갖는다. 제안된 무손실 스너버의 타당성 검증을 위하여 1.5kW급 부스트 컨버터의 시작품 제작을 통한 실험결과를 제시한다.

  • PDF

Research into The Future Development of the Hybrid System for Buoy

  • Lee, Ji-Young;Kim, Jong-Do;Lee, Jong-Ho;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.583-591
    • /
    • 2007
  • This paper reports the performance of a 150W PV-wave hybrid system with battery storage in buoy. This system was originally designed to meet a new hybrid ower system for buoy in Korea. In the case or lighted buoys and lighthouses, a light failure alarm system of wireless radio is attached so that light failures are immediately notified to the office. At lighthouse offshore fixed lights and light buoys where commercial electricity is not available, the power source depends on solar system and batteries. This power system has a various problems. Therefore energy derived from the sunshine, wind and waves has been used as the energy source lot aids to navigation. Recently a hybrid system of combining the solar, wind and the wave generator is a favorable system lot the ocean facilities like lighthouse and buoy. The hybrid system in this paper is intended for variable DC load like light, communication system in the buoy and includes a PV-wane generation system and battery. This is composed a high efficiency charging algorithm, switching converter and controller. This paper includes discussion on system reliability, power quality, and effects of hybrid system in the buoy. Simulation and experimental results show excellent performance.

Design and Application of a Photovoltaic Array Simulator with Partial Shading Capability

  • Beser, Ersoy
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1259-1269
    • /
    • 2019
  • PV system performance is dependent on different irradiations and temperature values in addition to the capability of the employed PV inverter / maximum power point tracker (MPPT) circuit or algorithm. Therefore, it would be appropriate to use a PV simulator capable of producing identical repeatable conditions regardless of the weather to evaluate the performance of inverter / MPPT circuits and algorithms. In accordance with this purpose, a photovoltaic (PV) array simulator is presented in this paper. The simulator is designed to generate current-voltage (I-V) and power-voltage (P-V) curves of a PV panel. Series connected cascaded modules constitute the basic part of the simulator. This feature also allows for the modeling of PV arrays since the number of modules can be increased and high voltage values can be reached with the simulator. In addition, the curves obtained at the simulator output become similar to the actual curves of sample PV panels with an increase in the number of modules. In order to show the validity of the proposed simulator, it was simulated for various situations such as panels under full irradiance and partial shading conditions. After completing simulations, experiments were realized to support the simulation study. Both simulation and experimental results show that the proposed simulator will be very useful for researchers to carry out PV studies under laboratory conditions.

The Concentrating Photovoltaic System using a Solar Tracker (태양위치 추적 장치를 이용한 집광형 태양광 발전시스템)

  • Yoo, Yeong-tae;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.377-385
    • /
    • 2017
  • The solar cell need the characteristic interpreting because the solar cell changes greatly according to the isolation, temperature and load in the photovoltaic development. Moreover, to get many energy in photovoltaic development need the position tracking of the sun according to the environment change. Also, The solar cells should be operated at the maximum power point. In this paper, I used microprocessor and sensor and designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and composed an power conversion system with boost converter and voltage source inverter. Used the constant voltage control method for maximum power point tracking in boost converter control and, used the SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control. The result was less then 5% when compared the catalogue of solar cell module and the simulation through a mathematics modelling. The boost rate of boost converter was similar to 167 % with the simulation.

Design of an Energy Management System for On-Chip Solar Energy Harvesting (온칩 태양 에너지 하베스팅을 위한 에너지 관리 시스템 설계)

  • Jeon, Ji-Ho;Lee, Duck-Hwan;Park, Joon-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.15-21
    • /
    • 2011
  • In this paper, an energy management circuit for solar energy harvesting system is designed in $0.35{\mu}m$ CMOS technology. The solar energy management system consists of an ISC(Integrated Solar Cell), a voltage booster, and an MPPT(Maximum Power Point Tracker) control unit. The ISC generates an open circuit voltage of 0.5V and a short circuit current of $15{\mu}A$. The voltage booster provides the following circuit with a supply voltage about 1.5V. The MPPT control unit turns on the pMOS switch to provide the load with power while the ISC operates at MPP. The SEMU(Solar Energy Management Unit) area is $360{\mu}m{\times}490{\mu}m$ including pads. The ISC area is $500{\mu}m{\times}2000{\mu}m$. Experimental results show that the designed SEMU performs proper MPPT control for solar energy harvested from the ISC. The measured MPP voltage range is about 370mV∼420mV.