• Title/Summary/Keyword: Maximum power coefficient

Search Result 333, Processing Time 0.025 seconds

Fabrication of Thermoelectric Module and Analysis of its Power Generation Characteristics (열전발전소자 제작 및 발전특성 분석)

  • Choi, Taeho;Kim, Tae Young
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.90-97
    • /
    • 2021
  • In this study, a Bi2Te3 thermoelectric generator (TEG) was fabricated to convert unused thermal energy into useful electrical energy. For the performance test, a dedicated experiment device consisting of a heating block operating with cartridge heaters and a cooling block through which a refrigerant flows was constructed. A 3×3 array of thermocouples was mounted on the heating block and the cooling block, respectively, to derive the temperature fields and heat transfer rate onto both sides of the TEG. Experiments were conducted for a total of 9 temperature differences, obtaining V-I and P-R curves. The results of 7 variables including Seebeck coefficients that have a major effect on performance were presented as a function of the temperature difference. The feasibility of the energy recovery performance of the developed TEG was verified from the maximum power output of 7.5W and conversion efficiency of 11.3%.

Dynamic Pyroelectric Properties and Their Frequency Dependences of $LiTaO_3$ Crystal ($LiTaO_3$ crystal의 dynamic 초전특성과 그 주파수의 의존성)

  • Lee, Won-Jae;Kang, Seong-Jun;Joung, Yang-Hee;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.35-41
    • /
    • 2000
  • The frequency dependence of the pyroelectric characteristics of $LiTaO_3$ have been investigated by using the dynamic method. In the frequency range between 2 and 1000 Hz, they are measured in both the regimes of pyroelectric current ($R_L=1M{\Omega}$) and pyrelectric voltage ($R_L=17.3G{\Omega}$), which can be selected by adjusting the value of the load resistance. Pyroelectric coefficient depending on the voltage response in the regime of pyroelectric current shows the maximum value of $1.56{\times}10^{-8}C/cm^2{\cdot}K$ at 40 Hz. The maximum values of figures of merits for the voltage response and for the detectivity are measured as $10.8{\times}10^{-11}C{\cdot}cm/J$ and $13{\times}10^{-7}C{\cdot}cm/J$, respectively. The voltage responsivity depending on the voltage response in the regime of pyroelectrci voltage shows the maximum value of 488 V/W at 2 Hz. Noise equivalent power and detectivity shows the minimum value of $3.95{\times}10^{-10}W/{\sqrt}Hz$ and maximum value of $5.6{\times}10^8cm{\cdot}{\sqrt}Hz/W$ at 40 Hz, respectively.

  • PDF

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

Thermoelectric Properties of Sb Deficiency N-Type Skutterudite Co4Sb12 (Sb가 결핍된 N형 Skutterudite Co4Sb12의 열전 특성)

  • Tak, Jang-Yeul;Van Du, Nguyen;Jeong, Min Seok;Lee, NaYoung;Nam, Woo Hyun;Seo, Won-Seon;Cho, Jung Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.496-500
    • /
    • 2019
  • In this study, we investigate the effect of an Sb-deficiency on the thermoelectric properties of double-filled n-type skutterudite ($In_{0.05}Yb_{0.15}Co_4Sb_{12-x}$). Samples were prepared by encapsulated induction melting, consecutive long-time annealing, and finally spark plasma sintering processes. The Sb-deficient sample contained a $CoSb_2$ secondary phase. Both the double-filled n-type skutterudite pristine and Sb-deficient samples showed metallic behavior in electrical conductivity with increasing temperature. The carrier concentration of the Sb-deficient sample decreased compared with that of the pristine sample. Due to a decrease in carrier concentration, the Sb deficient sample showed decreased electrical conductivity and an increased Seebeck coefficient compared with the conductivity and coefficient of the pristine sample. Furthermore, the Sb deficient sample showed an increase in the power factor (${\sigma}{\cdot}S^2$); the power factor maximum shifted to athe lower temperature side than ones of the pristine sample. As a result, the Sb-deficient sample represents an improved average figure of merit (ZT) and a $ZT_{max}$ temperature lower than that of the pristine sample. Therefore, we propose that Sb-deficient double-filled n-type skutterudite thermoelectric material ($In_{0.05}Yb_{0.15}Co_4Sb_{12-x}$) be used in the 573~673 K temperature range.

Thermoelectric Characteristics of the p-type $(Bi,Sb)_2Te_3$ Nano-Bulk Hot-Pressed with Addition of $ZrO_2$ as Nano Inclusions ($ZrO_2$를 나노개재물로 첨가한 p형 $(Bi,Sb)_2Te_3$ 나노벌크 가압소결체의 열전특성)

  • Yeo, Y.H.;Kim, M.Y.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • Thermoelectric properties of the p-type $(Bi,Sb)_2Te_3$, hot-pressed with the $(Bi,Sb)_2Te_3$ powders fabricated by melting/grinding method, were characterized with variation of the hot-pressing conditions. Thermoelectric characteristics of the hot-pressed $(Bi,Sb)_2Te_3$ were also analyzed with addition of $ZrO_2$ as nano inclusions. With increasing the hotpressing temperature from $350^{\circ}C$ to $550^{\circ}C$, Seebeck coefficient and electrical resistivity decreased from 275 ${\mu}V$/K to 230 ${\mu}V$/K and 6.68 $m{\Omega}$-cm to 1.86 $m{\Omega}$-cm, respectively. The power factor decreased with addition of $ZrO_2$ nano powders more than 1 vol%, implying that the optimum amount of $ZrO_2$ nano inclusions to get a maximum power factor would be less than 1 vol%.

Bioequivalence of Two Clarithromycin Tablets (클래리스로마애신 정제의 생물학적 동등성 평가)

  • 김종국;이사원;최하곤;고종호;이미경;김인숙
    • Biomolecules & Therapeutics
    • /
    • v.6 no.2
    • /
    • pp.219-224
    • /
    • 1998
  • The bioequivalence of two clarithromvcin products was evaluated with 16 normal male volunteers (age 23-28 yr, body weight 57.5-75.517g) following single oral dose. Test product was ReYon Clarithromycin tablets (ReYon Pharm. Corp., Korea) and reference product was Klarici $d_{R}$ tablets (Abbott Korea). Both products contain 250 mg of clarithromucin. One tablet of the test or the reference product was administered to the volunteers, respectively, by randomized two period cross-over study (2$\times$2 Latin square method). The determination of clarithromycin was accomplished using a modified agar well diffusion bioassay. As a result of the assay validation, the quantification of clarithromycin in human serum by this technique was possible down to 0.03$\mu$g/ml using 100$\mu$l of serum. The coefficient of variation (C.V.) was less than 10%. Average drug concentrations at each sampling time and pharmacokinetic parameters calculated were not significantly different between two products P>0.05); the area under the curve to last sampling time (24 hr) (AU $Co_{24hr}$ (8.10$\pm$ 1.26 vs 8.22$\pm$ 1.627g . hr/ml), AUC from time zero to infinite (AU $Co_{\infty}$) (8.61 $\pm$ 1.28 vs 8.84$\pm$ 1.71 $\mu$g . hr/ml), maximum plasma concentration ( $C_{msx}$) (0.87$\pm$0.22 vs 0.88$\pm$0.19 $\mu$g/ml) and time to maximum plasma concentration ( $T_{max}$) (2.69 $\pm$0.48 vs 2.56$\pm$ 0.51 hr). The differences of mean AU $Co_{24h}$, $C_{msx}$ and $T_{msx}$ between the two products (1.44, 1.39, and 4.65%, respectively) were less than 20%. The power (1-$\beta$) and treatment difference ($\Delta$) for AU $Co_{24hr}$, and $C_{max}$ were more than 0.8 and less than 0.2, respectivly. Although the power for $T_{max}$ was under 0.8, $T_{max}$. of the two products was not significantly different each other (p>0.05). These results suggest that the bioavailability of ReYon Clarithromycin tablets is not significantly different from that of Klarici $d_{R}$ tablets. Therefore, two products are bioequivalent based on the current results. results.sults.sults.s.s.s.s.s.s.s.

  • PDF

Numerical Analysis of Pressurized Air Flow and Acting Wave Pressure in the Wave Power Generation System Using the Low-Reflection Structure with Wall-Typed Curtain (저반사구조물을 이용한 파력발전에 있어서 압축공기흐름 및 작용파압에 관한 수치해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.171-181
    • /
    • 2011
  • Recently, many studies have been attempted to save the cost of production and to build the ocean energy power generating system. The low-reflection structure with the wall-typed curtain which has a wave power generation system of OWC is known as the most effective energy conversion system. A three-dimensional numerical model was used to understand the characteristics of velocity of flows about compressed air and to estimate the pressure acting on the low-reflection structure due to the short-period waves. The three-dimensional numerical wave flume which is the model for the immiscible two-phase flow was applied in interpretation for this. The numerical simulation showed well about the changes in velocity of compressed air and the characteristics of pressure according to the change in the wave height and depth of the curtain wall. Additionally, the results found that there was the point of the maximum velocity of the compressed air when the reflection coefficient is at its lowest point.

RCS Extraction of Trihedral Corner Reflector for SAR Image Calibration (SAR 영상 보정용 삼각 전파 반사기의 정확한 RCS 추출)

  • Kwon, Soon-Gu;Yoon, Ji-Hyeong;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.979-986
    • /
    • 2010
  • This paper presents an algorithm for retrieving precise radar cross sections(RCS) of various trihedral corner reflectors (TCR) which are external calibrators of synthetic aperture radar(SAR) systems. The theoretical RCSs of the TCRs are computed based on the physical optics(PO), geometrical optics(GO), and physical theory of diffraction(PTD) techniques; that is, the RCS computation includes the single reflections(PO), double reflections(GO-PO), triple reflections(GO-GO-PO), and edge diffractions(PTD) from the TCR. At first, we acquire an SAR image of the area that five TCRs installed in, and then extract the RCS of the TCRs. The RCSs of the TCRs are extracted accurately from the SAR image by adding up the power spill, which is generated due to the radar IRF(Impulse Response Function), using a square window. We compare the extracted RCSs with the theoretical RCSs and analyze the difference between the theoretical and experimental RCSs of the TCR for various window sizes and various backscattering coefficient levels of the adjacent area. Finally, we propose the minimum size of the integration area and the maximum level of the backscattering coefficients for the adjacent area.

An Evaluation of Heating Performance of the Heat Pump System Using Wasted Heat from Thermal Effluent for Greenhouse Facilities in Jeju (발전소 온배수 폐열을 이용한 제주 시설온실 냉난방용 열펌프 시스템의 난방성능 평가)

  • Moon, Sungbu;Hyun, Myung-Taek;Heo, Jaehyeok;Lee, Dong-Won;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • A heat pump system using wasted heat from thermal effluent to supply the heating energy can reduce energy consumption and emissions of greenhouse gases by greenhouse facilities nearby. The Jeju National University consortium constructed a heat pump system using the thermal effluent from the Jeju thermal power plant of KOMIPO to provide with cool or hot water to greenhouse facilities located 3 km from the power station. In this paper, the system configuration of the heat pump system was summarized, and the results of operations for demonstration of a heating performance carried out during the winter season in 2018 were investigated. The preoperational tests proved that the water temperature drop through the pipeline transporting extracted heat was less than $2^{\circ}C$. The COP (coefficient of performance) of the heat pump was higher than 4.0, and hot water with the maximum temperature of $50^{\circ}C$ could be supplied to greenhouse facilities by utilizing wasted heat from thermal effluent.

Improvement of the Beam-Wave Interaction Efficiency Based on the Coupling-Slot Configuration in an Extended Interaction Oscillator

  • Zhu, Sairong;Yin, Yong;Bi, Liangjie;Chang, Zhiwei;Xu, Che;Zeng, Fanbo;Peng, Ruibin;Zhou, Wen;Wang, Bin;Li, Hailong;Meng, Lin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1362-1369
    • /
    • 2018
  • A method aimed at improving the beam-wave interaction efficiency by changing the coupling slot configuration has been proposed in the study of extended interaction oscillators (EIOs). The dispersion characteristics, coupling coefficient and interaction impedance of the high-frequency structure based on different types of coupling slots have been investigated. Four types of coupled cavity structures with different layouts of the coupling slots have been compared to improve the beam-wave interaction efficiency, so as to analyze the beam-wave interaction and practical applications. In order to determine the improvement of the coupling slot to a coupled cavity circuit in an EIO, we designed four nine-gap EIOs based on the coupled cavity structure with different coupling slot configurations. With different operating frequencies and voltages takes into consideration, beam voltages from 27 to 33 kV have been simulated to achieve the best beam-wave interaction efficiency so that the EIOs are able to work in the $2{\pi}$ mode. The influence of the Rb and the ds on the output power is also taken into consideration. The Rb is the radius of the electron beam, and the ds is the width of the coupling slot. The simulation results indicate that a single-slot-type EIO has the best beam-wave interaction efficiency. Its maximum output power is 2.8 kW and the efficiency is 18% when the operating voltage is 31 kV and electric current is 0.5 A. The output powers of these four EIOs that were designed for comparison are not less than 1.7 kW. The improved coupling-slot configurations enables the extended interaction oscillator to meet the different engineering requirements better.