• 제목/요약/키워드: Maximum likelihood classifiers

검색결과 17건 처리시간 0.024초

하이브리드법에 의한 HMM-Net 분류기의 학습 (On Learning of HMM-Net Classifiers Using Hybrid Methods)

  • 김상운;신성효
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1273-1276
    • /
    • 1998
  • The HMM-Net is an architecture for a neural network that implements a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria used for learning HMM-Net classifiers are maximum likelihood (ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this paper we propose an efficient learning method of HMM-Net classifiers using hybrid criteria, ML/MMSE and MMI/MMSE, and report the results of an experimental study comparing the performance of HMM-Net classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numeric digits from /0/ to /9/ show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

Land use classification using CBERS-1 data

  • Wang, Huarui;Liu, Aixia;Lu, Zhenhjun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.709-714
    • /
    • 2002
  • This paper discussed and analyzed results of different classification algorithms for land use classification in arid and semiarid areas using CBERS-1 image, which in case of our study is Shihezi Municipality, Xinjiang Province. Three types of classifiers are included in our experiment, including the Maximum Likelihood classifier, BP neural network classifier and Fuzzy-ARTMAP neural network classifier. The classification results showed that the classification accuracy of Fuzzy-ARTMAP was the best among three classifiers, increased by 10.69% and 6.84% than Maximum likelihood and BP neural network, respectively. Meanwhile, the result also confirmed the practicability of CBERS-1 image in land use survey.

  • PDF

뉴로-퍼지 모델을 이용한 항공다중분광주사기 영상의 지표면 분류 (Land Surface Classification With Airborne Multi-spectral Scanner Image Using A Neuro-Fuzzy Model)

  • 한종규;류근호;연영광;지광훈
    • 정보처리학회논문지D
    • /
    • 제9D권5호
    • /
    • pp.939-944
    • /
    • 2002
  • In this paper, we propose and apply new classification method to the remotely sensed image acquired from airborne multi-spectral scanner. This is a neuro-fuzzy image classifier derived from the generic model of a 3-layer fuzzy perceptron. We implement a classification software system with the proposed method for land cover image classification. Comparisons with the proposed and maximum-likelihood classifiers are also presented. The results show that the neuro-fuzzy classification method classifies more accurately than the maximum likelihood method. In comparing the maximum-likelihood classification map with the neuro-fuzzy classification map, it is apparent that there is more different as amount as 7.96% in the overall accuracy. Most of the differences are in the "Building" and "Pine tree", for which the neuro-fuzzy classifier was considerably more accurate. However, the "Bare soil" is classified more correctly with the maximum-likelihood classifier rather than the neuro-fuzzy classifier.

HMM-Net 분류기의 학습 (On learning of HMM-Net classifiers)

  • 김상운;오수환
    • 전자공학회논문지C
    • /
    • 제34C권9호
    • /
    • pp.61-67
    • /
    • 1997
  • The HMM-Net is an architecture for a neural network that implements a hidden markov model(HMM). The architecture is developed for the purpose of combining the classification power of neural networks with the time-domain modeling capability of HMMs. Criteria which are used for learning HMM_Net classifiers are maximum likelihood(ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numbers from /young/to/koo/ show that in the binary inputs the performance of MMSE is better than the others, while in the fuzzy inputs the performance of MMI is better than the others.

  • PDF

HMM-Net 분류기의 효율적인 학습법 (An efficient learning method of HMM-Net classifiers)

  • 김상운;김탁령
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.933-935
    • /
    • 1998
  • The HMM-Net is an architecture for a neural network that implements a hidden markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria used for learning HMM-Net classifiers are maximum likelihood(ML) and minimization of mean squared error(MMSE). In this paper we propose an efficient learning method of HMM_Net classifiers using a ML-MMSE hybrid criterion and report the results of an experimental study comparing the performance of HMM_Net classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numeric digits from /0/ to /9/ show that the performance of the proposed method is better than the others in the repects of learning and recognition rates.

  • PDF

CREATING MULTIPLE CLASSIFIERS FOR THE CLASSIFICATION OF HYPERSPECTRAL DATA;FEATURE SELECTION OR FEATURE EXTRACTION

  • Maghsoudi, Yasser;Rahimzadegan, Majid;Zoej, M.J.Valadan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.6-10
    • /
    • 2007
  • Classification of hyperspectral images is challenging. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. In other words in order to obtain statistically reliable classification results, the number of necessary training samples increases exponentially as the number of spectral bands increases. However, in many situations, acquisition of the large number of training samples for these high-dimensional datasets may not be so easy. This problem can be overcome by using multiple classifiers. In this paper we compared the effectiveness of two approaches for creating multiple classifiers, feature selection and feature extraction. The methods are based on generating multiple feature subsets by running feature selection or feature extraction algorithm several times, each time for discrimination of one of the classes from the rest. A maximum likelihood classifier is applied on each of the obtained feature subsets and finally a combination scheme was used to combine the outputs of individual classifiers. Experimental results show the effectiveness of feature extraction algorithm for generating multiple classifiers.

  • PDF

패턴분류기를 위한 최소오차율 학습알고리즘과 예측신경회로망모델에의 적용 (A Minimum-Error-Rate Training Algorithm for Pattern Classifiers and Its Application to the Predictive Neural Network Models)

  • 나경민;임재열;안수길
    • 전자공학회논문지B
    • /
    • 제31B권12호
    • /
    • pp.108-115
    • /
    • 1994
  • Most pattern classifiers have been designed based on the ML (Maximum Likelihood) training algorithm which is simple and relatively powerful. The ML training is an efficient algorithm to individually estimate the model parameters of each class under the assumption that all class models in a classifier are statistically independent. That assumption, however, is not valid in many real situations, which degrades the performance of the classifier. In this paper, we propose a minimum-error-rate training algorithm based on the MAP (Maximum a Posteriori) approach. The algorithm regards the normalized outputs of the classifier as estimates of the a posteriori probability, and tries to maximize those estimates. According to Bayes decision theory, the proposed algorithm satisfies the condition of minimum-error-rate classificatin. We apply this algorithm to NPM (Neural Prediction Model) for speech recognition, and derive new disrminative training algorithms. Experimental results on ten Korean digits recognition have shown the reduction of 37.5% of the number of recognition errors.

  • PDF

A Neuro-Fuzzy Model Approach for the Land Cover Classification

  • Han, Jong-Gyu;Chi, Kwang-Hoon;Suh, Jae-Young
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.122-127
    • /
    • 1998
  • This paper presents the neuro-fuzzy classifier derived from the generic model of a 3-layer fuzzy perceptron and developed the classification software based on the neuro-fuzzl model. Also, a comparison of the neuro-fuzzy and maximum-likelihood classifiers is presented in this paper. The Airborne Multispectral Scanner(AMS) imagery of Tae-Duk Science Complex Town were used for this comparison. The neuro-fuzzy classifier was more considerably accurate in the mixed composition area like "bare soil" , "dried grass" and "coniferous tree", however, the "cement road" and "asphalt road" classified more correctly with the maximum-likelihood classifier than the neuro-fuzzy classifier. Thus, the neuro-fuzzy model can be used to classify the mixed composition area like the natural environment of korea peninsula. From this research we conclude that the neuro-fuzzy classifier was superior in suppression of mixed pixel classification errors, and more robust to training site heterogeneity and the use of class labels for land use that are mixtures of land cover signatures.

  • PDF

훈련 자료의 임의 선택과 다중 분류자를 이용한 원격탐사 자료의 분류 (Classification of Remote Sensing Data using Random Selection of Training Data and Multiple Classifiers)

  • 박노욱;유희영;김이현;홍석영
    • 대한원격탐사학회지
    • /
    • 제28권5호
    • /
    • pp.489-499
    • /
    • 2012
  • 이 논문에서는 원격탐사 자료의 분류를 목적으로 서로 다른 훈련 집단들과 분류자들로부터 생성된 분류 결과들을 결합하는 분류 틀을 제안하였다. 제안 분류 틀의 핵심 부분은 서로 다른 훈련 집단과 분류자들을 이용함으로써 분류 결과 사이의 다양성을 증가시켜서 결과적으로 분류 정확도를 향상시키는데 있다. 제안 분류 틀에서는 우선 서로 다른 샘플링 밀도를 가지는 서로 다른 훈련 집단들을 생성한 후에, 이들을 서로 다른 구분 능력을 나타내는 분류자들의 입력 훈련 자료로 사용한다. 그리고 초기 분류 결과들에 다수결 규칙을 적용하여 최종 분류 결과를 얻게 된다. 다중 시기 ENVISAT ASAR 자료를 이용한 토지 피복 분류사례 연구를 통해 제안 방법론의 적용 가능성을 검토하였다. 사례 연구에서 3개의 훈련 집단과 최대우도 분류자, 다층 퍼셉트론 분류자, support vector machine 등과 같은 3개의 분류자를 이용한 9개의 분류 결과를 결합하였다. 사례 연구 결과, 제안 분류 틀 안에서 토지 피복 구분에 관한 상호 보완적인 정보의 이용이 가능해져서 가장 높은 분류 정확도를 나타내었다. 서로 다른 결합들을 비교하였을 때, 다양성이 크지 않은 분류 결과들을 결합한 경우에는 분류 정확도의 향상이 나타나지 않았다. 따라서 다중 분류 시스템의 설계시 분류자들의 다양성을 확보하는 것이 중요함을 확인할 수 있었다.

형상인식법을 이용한 음향방출신호의 분류 (Discrimination of Acoustic Emission Signals using Pattern Recognition Analysis)

  • 주영상;정현규;심철무;임형택
    • 비파괴검사학회지
    • /
    • 제10권2호
    • /
    • pp.23-31
    • /
    • 1990
  • Acoustic Emission(AE) signals obtained during fracture toughness test and fatigue test for nuclear pressure vessel material(SA 508 cl.3) and artificial AE signals from pencil break and ultrasonic pulser were classified using pattern recognition methods. Three different classifiers ; namely Minimum Distance Classifier, Linear Discriminant Classifier and Maximum Likelihood Classifier were used for pattern recognition. In this study, the performance of each classifier was compared. The discrimination of AE signals from cracking and crack surface rubbing was possible and the analysis for crack propagation was applicable by pattern recognition methods.

  • PDF