• 제목/요약/키워드: Maximum equivalent stress or strain

검색결과 10건 처리시간 0.024초

휴대폰 재질에 따른 충격 해석 (Impact Analysis According to Material of Hand Phone)

  • 조재웅;민병상;한문식
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.69-75
    • /
    • 2009
  • This study is analyzed by impact simulation according to material property at terminal case of hand phone. Maximum equivalent stress or strain at plastic is 40 times as great as that at magnesium alloy. And the next greatest stress or strain is shown at aluminium alloy. The value of maximum equivalent stress is shown as 6.5 Mpa in case of plastic, magnesium alloy and aluminium alloy. Maximum shear strain at plastic is 40 times as great as that at magnesium alloy. And the next greatest strain is shown at aluminium alloy. The value of deformation or strain at magnesium alloy and aluminium alloy is not different.

  • PDF

자동차 충돌 해석에 관한 기초 연구 (Basic Study on Impact Analysis of Automobile)

  • 조재웅;민병상;한문식
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.64-70
    • /
    • 2009
  • This study is to analyze the impact of automotive body with computer simulation. The total deformation, equivalent strain and strain and principal stress are analyzed respectively in case of front, rear and side impacts. The maximum total deformation of side impact is more than 6 times as large as that of rear impact. The maximum equivalent strain or stress of side impact is more than 4 times as large as that of rear impact. These deformation, strain and stress of front impact are a little more than those of rear impact. The maximum principal stress of side impact is more than 4.5 times as large as that of rear impact. This stress of front impact is a little more than that of rear impact.

  • PDF

유한요소해석을 이용한 공형 압연에서의 표면흠 발생 연구 (A Study of Surface Defect Initiation in Groove Rolling Using Finite Element Analysis)

  • 나두현;허종욱;이영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.333-336
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No. 3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibits the generation of surface defect.

  • PDF

공형 압연에서의 표면흠 성장 모델링 및 제어 방법 연구 (Modeling and Controlling of Surface Defect Initiation and Growth in Groove Rolling)

  • 나두현;이영석
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.607-612
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No.3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibit the generation of surface defect.

PCTC 박판 블록 용접 변형에 관한 연구 (A Study on Welding Deformation of thin plate block in PCTC)

  • 강성구;양종수;김호경
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.97-97
    • /
    • 2009
  • The use of thin plate increases due to the need for light weight in large ship. Thin plate is easily distorted and has residual stress by welding heat. Therefore, the thin plate should be carefully joined to minimize the welding deformation which costs time and money for repair. For one effort to reduce welding deformation, it is very useful to predict welding deformation before welding execution. There are two methods to analyze welding deformation. One is simple linear analysis. The other is nonlinear analysis. The simple linear analysis is elastic analysis using the equivalent load method or inherent strain method from welding experiments. The nonlinear analysis is thermo-elastic analysis which gives consideration to the nonlinearity of material dependent on temperature and time, welding current, voltage, speed, sequence and constraint. In this study, the welding deformation is analyzed by using thermo-elastic method for PCTC(Pure Car and Truck Carrier) which carries cars and trucks. PCTC uses thin plates of 6mm thickness which is susceptible to welding heat. The analysis dimension is 19,200mm(length) * 13,825mm(width) * 376mm(height). MARC and MENTAT are used as pre and post processor and solver. The boundary conditions are based on the real situation in shipyard. The simulations contain convection and gravity. The material of the thin block is mild steel with $235N/mm^2$ yield strength. Its nonlinearity of conductivity, specific heat, Young's modulus and yield strength is applied in simulations. Welding is done in two pass. First pass lasts 2,100 second, then it rests for 900 second, then second pass lasts 2,100 second and then it rests for 20,000 second. The displacement at 0 sec is caused by its own weight. It is maximum 19mm at the free side. The welding line expands, shrinks during welding and finally experiences shrinkage. It results in angular distortion of thin block. Final maximum displacement, 17mm occurs around welding line. The maximum residual stress happens at the welding line, where the stress is above the yield strength. Also, the maximum equivalent plastic strain occurs at the welding line. The plastic strain of first pass is more than that of second pass. The flatness of plate in longitudinal direction is calculated in parallel with the direction of girder and compared with deformation standard of ${\pm}15mm$. Calculated value is within the standard range. The flatness of plate in transverse direction is calculated in perpendicular to the direction of girder and compared with deformation standard of ${\pm}6mm$. It satisfies the standard. Buckle of plate is calculated between each longitudinal and compared with the deformation standard. All buckle value is within the standard range of ${\pm}6mm$.

  • PDF

구멍들을 가진 표준 CT 시험편 내에서의 크랙 거동에 대한 해석적 연구 (An Analytical Study on Crack Behavior Inside Standard Compact Tension Specimen with Holes)

  • 이정호;조재웅
    • 대한기계학회논문집A
    • /
    • 제40권6호
    • /
    • pp.531-537
    • /
    • 2016
  • 기계 혹은 구조물의 파손 및 파괴는 소재의 내부에 존재하는 결함에서 발생하는 크랙에 의한 것이다. 이러한 크랙들은 밀집하여 존재하는 경우가 많기 때문에 크랙의 진전 및 성장특성들을 고려하지 않으면 안 된다. 이에 따라 본 연구에서는 표준 CT 시험편 내부의 크랙 및 구멍의 위치에 따른 파괴특성을 고찰하였으며, 표준CT 시험편에 편심된 집중하중을 가하였을 때, 시험편 내 크랙 주변의 구멍의 존재유무 및 위치에 따른 파괴역학적 거동에 대하여 규명하였다. 연구 결과로서 Model 3(크랙 주변에 구멍이 한 개 존재하는 시험편 모델로서 크랙의 끝부분과 구멍 간의 거리 가로방향으로 2mm의 경우)가 최대 변형량, 최대 응력 및 최대 변형 에너지, 모두 가장 크게 나타났으며, 모든 시험편 모델들이 시험편 내부의 크랙과 구멍의 거리가 가까울수록 최대 응력이 커지는 경향을 보였다. 또한 구멍의 개수와는 별개로 시험편 내부의 크랙 가까이에 구멍이 존재할 때 크랙 가까이에서 최대 응력은 커지는 경향이 나타나는 것을 알 수 있었으며, 이러한 본 연구 결과를 토대로 기계 혹은 기계 구조물 내부에 구멍을 뚫는다면, 시험편에 발생하는 파괴 응력의 값을 줄임으로써 파손이나 고장이 일어나는 것을 방지할 수 있을 것으로 사료된다.

이축 정적 하중이 부가된 반복 인장 혹은 비틀림 하중하에서 균열 발생과 성장 거동 (Behavior of Fatigue Crack Initiation and Propagation under Cyclic Tensile or Torsional Loading with Superimposed Static Biaxial Load)

  • 허용학;박휘립;권일범;김진영
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1446-1455
    • /
    • 2000
  • Fatigue crack initiation and propagation behavior under cyclic biaxial loading has been investigated using thin-walled tubular specimen with a hole. Two types of biaxial loading system, i.e. cyclic tensile loading with super-imposed static torsional load and cyclic torsional loading with superimposed static tensile load, with various values of the biaxial loading ratio, $\tau$ s/ $\sigma$ max (or $\tau$ max/ $\sigma$s) were employed. Fatigue tests show that fatigue crack near the hole initiates and propagates at 900 and 450 direction to the longitudinal direction of the specimen under cyclic tensile and torsion loading with static biaxial stress, respectively, and the static biaxial stress doesn't have any great influence on fatigue crack initiation and growth direction. Stress analysis near the hole of the specimen shows that the crack around the hole initiates along the plane of maximum tangential stress range. Fatigue crack growth rates were evaluated as functions of equivalent stress intensity factor range, strain energy density factor range and crack tip opening displacement vector, respectively. It is shown that the biaxial mode fatigue crack growth rates can be relatively consistently predicted with these cyclic parameters.

자동차용 PCV밸브내 유통특성에 의한 밸브응력 및 변형에 미치는 입출구 차압의 영향 (The Effect of In-Outlet Differential Pressure on a Valve Body Stress and Deformation by the Blow-by Gas Flow Characteristic in the PCV valve for Automobile)

  • 권오헌;이연원;송상민;이종훈;강지웅
    • 한국안전학회지
    • /
    • 제20권1호
    • /
    • pp.36-41
    • /
    • 2005
  • PCV(Positive Crankcase Ventilation) valve acts as a flow control valve to get a re-combustion of blow-by gas by having it flow from a crankcase to an inlet manifold suction tube. The blow-by gas of the crankcase should be eliminated or taken properly because it cause corrosion to critical parts, and contributes to increase crankcase pressure that can cause a drop in efficiency. The excessive stress and strain on the PCV valve that remove these harmful gas would be bring the difficult on the flow rate control and failure of the valve. Those condition inevitably induce the accident. Therefore, this study purpose is FEM evaluation of the stresses and deformation in the X3 PCV model according to the change of the differential pressure between inlet and outlet. From results, the maximum equivalent stresses increased linearly according to the increase of the differential pressure at the about 50mm from the inlet position and were under the yield strength of the valve. And the deformations were relatively small regardless of the in-outlet differential pressure variation.

FEM 시뮬레이션을 이용한 임펠러의 구조 안전성 평가 (The Evaluation of Structural Safety of Impeller Using FEM Simulation)

  • 정종윤
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.41-47
    • /
    • 2020
  • As modern industries are highly being developed, it is required that mechanical parts have to be manufactured with a high precision. In order to have precise parts, error-free designs have to be done before manufacturing with accuracy. For this intention being fulfilled, a mechanical analysis is essential for design proof. Nowadays, FEM simulation is a popular tool for verifying a machine design. In this paper, an impeller, being utilized in a compressor or an oil mixer as an actuator, is studied for an evaluation. The purpose of this study is to present a safety of an impeller for a proof of its mechanical stability. A static analysis for stress, strain, and deformation within a regular usage is examined. This simulation test shows 357.26×106 Pa for maximum equivalent stress and 0.207mm for total deformation. A fatigue test is carried to provide durability and its result shows that minimum safety factor is 3.2889, which guarantees that it runs without a fatigue failure in 106 cycles. The natural frequencies for the impeller is ranged from 228.09Hz to 1,253.6Hz for the 1st to the 6th mode. Total deformations at these natural frequencies are shown from 6.84mm to 12.631mm. Furthermore, Campbell diagram reveals that a critical speed is not found throughout regular rotational speeds. From the test results for the analysis, this paper concludes that the suggested impeller is proved for its mechanical safety and good to utilize at industries.

3차원 유한요소법에 의한 임플란트 지지 3본 고정성 가공 의치의 부적합도가 인접골 응력에 미치는 영향 분석 (Finite Element Analysis of Bone Stress Caused by Horizontal Misfit of Implant Supported Three-Unit Fixed Prosthodontics)

  • 이승환;조광헌
    • 구강회복응용과학지
    • /
    • 제28권2호
    • /
    • pp.147-161
    • /
    • 2012
  • 본 연구에서는 유한요소해석 방법을 사용하여 임플란트 지지 3본 고정성 가공 의치에 수평적인 부적합이 존재할 때 그 정도가 임플란트 인접골 응력 발생에 미치는 영향에 대해 조사하였다. 3본 고정성 가공의치, 임플란트/악골 복합체로 구성된 해석 모델은 3차원으로 연구되었다. 3본 고정성 가공의치의 체결 간격은 하악 제2 소구치와 제2 대구치에 17.9mm 거리로 식립된 임플란트 간격에 비해 0.1mm 짧거나(17.8mm), 0.1mm 길게(18.0mm) 모델링하였다. 3본 고정성 가공의치와 임플란트 지대주 간의 체결은 총 6단계로 모사되었고 각 단계별로 가공의치가 하방으로 0.1mm 씩 변위되었다. 유한요소해석에는 PC용으로 출시된 DEFORM$^{TM}$ 3D 프로그램(ver 6.1, SFTC, Columbus, OH, USA)을 사용하였다. 3본 고정성 가공의치와 임플란트 사이의 응력은 von-Mises 응력, 최대 압축 응력, 필요한 경우 방사상 응력을 평가하였다. d=18.0mm인 모델에서는 가공의치와 지대주간의 체결이 이루어지지 않은 반면, d=17.8mm 인 모델에서는 성공적으로 체결이 가능했다. 체결 여부를 떠나 과도하게 높은 응력이 체결과정과 그 이후에 발생되었는데, 17.8mm 모델의 경우 체결완료 후에도 임플란트 주위 변연골에서 잔류하는 인장 및 압축 응력이 각각 최대 186.9MPa과 114.1MPa이었다. 이 경우 임플란트로부터 2mm 떨어진 부분까지 압축 응력이 골개조 장애 임계 응력인 55MPa($4,000{\mu}{\varepsilon}$과 같은 크기)보다 크게 측정되었다. 3본 고정성 가공의치의 0.1mm 크기의 수평적 부적합은 체결 과정뿐만 아니라 완료 후에도 인접 변연골에 높은 응력을 발생시킬 수 있다.