• Title/Summary/Keyword: Maximum efficiency control

Search Result 777, Processing Time 0.023 seconds

Design of Vibration Harvesting Circuit using the MPPT control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yun, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.392-395
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using the piezoelectric element has been designed. MPPT (maximum power point tracking control) control function has been implemented to deliver the maximum power to the load by using the electric power-voltage characteristic of the piezoelectric element. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the full wave rectifier circuit and delivers the maximum available power to the load. The vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. The maximum power efficiency is 91%, and the chip area except pads is $1,100{\mu}m{\times}730{\mu}m$.

  • PDF

Influence of the Lysine to Protein Ratio in Practical Diets on the Efficiency of Nitrogen Use in Growing Pigs

  • Lee, K.U.;Boyd, R.D.;Austic, R.E.;Ross, D.A.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.718-724
    • /
    • 1998
  • Twelve gilts were used to investigate the effect of lysine to protein ratio (5.2 g lysine/100 g CP vs. 6.7 g lysine/100 g CP) in practical diets on nitrogen retention and the efficiency of utilization in growing pigs. Treatments involved 2 levels of dietary lysine (5.2 or 6.7 g/100 g CP) and 3 levels of dietary crude protein (11, 14 and 17% in diet). Nitrogen retention was greatest when pigs were fed the control diet containing 17% protein. Nitrogen retention progressively increased as dietary protein increased (p < 0.01), but it was not affected by lysine concentration (g/100 g CP). Apparent biological value (ABV, nitrogen retained/apparently digestible nitrogen) was estimated to be ~50% at the maximum nitrogen retention. ABV was not affected by lysine concentration, but declined (p < 0.05) as the dietary protein level increased. The efficiency of intake N used for maximum nitrogen retention was approximately 44%. One gram of lysine supported approximately 9 to 10 g apparent protein accretion (nitrogen retention ${\times}$ 6.25/lysine intake) in pigs fed control diets. The efficiency of lysine utilization for protein accretion was lower in pigs fed high-lysine diets (6.7 g lysine/l00 g CP) so that 1 g of lysine accounted for 7 to 8 g of protein accretion in these pigs (p < 0.01). The lysine required to support maximum nitrogen retention in pigs fed high-lysine diets was higher than that in pigs fed control diets, which suggests that lysine was over-fortified relative to crude protein, since practical diets can not be formulated without excess of some amino acids. In summary the concentration of 5.2 g total lysine/100 g CP in diet is more appropriate for corn-soybean diets than the commonly suggested the content of 6.7 g total lysine/100 g CP.

MPPT Control of Photovoltaic System using HBPI Controller (HBPI 제어기를 이용한 태양광발전 시스템의 MPPT 제어)

  • Ko, Jae Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1864-1871
    • /
    • 2012
  • This paper proposes the hybrid proportional integral(HBPI) controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional constant voltage(CV), perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, in order to solve these problems, this paper proposes HBPI controller that is adjusted gain of conventional PI control using fuzzy control, and the maximum power point tracks using this controller. The validity of the controller proposed in this paper proves through the results of the comparisons.

Optimal current angle control method of interior permanent magnet Synchronous Motors (매입형 영구자석 동기전동기의 최적 전류각 제어)

  • 김명찬;김종구;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.352-357
    • /
    • 1996
  • Recently, Permanent Magnet Synchronous Motor(PMSM) drives are widely used for industrial applications due to its high efficiency and high power factor control strategy. PMSM generally have two classifications such as the SPMSM(Surface Permanent Magnet Synchronous Motors) and IPMSM(Inter Permanent Magnet Synchronous Motors). IPMSA has economical merits over SPMSM in higher speed range, mechanical robustness, and higher power rate by the geometric difference. The maximum torque operation in IPMSM is realized by the current angle control which is to utilize additional reluctance torque due to a rotor saliency. In traction, spindle and compressor drives, constant power operation with higher speed range are desirable. This is simply achieved in the DC motor drives by the reduction of the field current as the speed is increased. However, in the PMSM, direct control of the magnet flux is not available. The airgap flux can be weakened by the appropriate current angle control to demagnetize. In this paper, the control method of optimal current vector in IPMSM is described in order to obtain the maximum torque or maximum output with the speed and load variations. The applied algorithm is realized by the proto system with torque and speed control Experimental results show this approach is satisfied for the high performance servo applications. (author). 6 refs., 9 figs., 1 tab.

  • PDF

Maximum Power Point Tracking Control Employing Fibonacci Search Algorithm for Photovoltaic Power Generation System

  • Miyatake Masafumi;Kouno Tooru;Nakano Motomu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.622-625
    • /
    • 2001
  • Photovoltaic generation systems need MPPT (Maximum Power Point Tracking) control because the output power depends on the operating voltage and current. Therefore, many researchers propose various types of MPPT control methods. A new MPPT control scheme is proposed in this paper in order to realize higher efficiency with simple calculation. The line search algorithm with fibonacci sequence which is one of the optimizing method is employed for the MPPT. The line search method is modified for real-time operation. The method is verified by simulations and experiments. It is concluded that the scheme can respond fast variation of irradiance.

  • PDF

Simulation of Variable Wind Energy System (가변 풍력시스탬의 시뮬레이션)

  • Kim, Jae-Gon;Ku, Ja-Bong;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2268-2270
    • /
    • 2003
  • In this paper, mathematically modeled equations were derived for wind turbine under the analysis of aerodynamics. On the basis of these equations, maximum power controller is implemented by simulink in matlab. In order to achieving maximum power, variable speed control method is used for obtaining maximum power coefficient in the variable wind speed because we can have maximum changing efficiency in these coefficients. Also, the maximum power control of wind generator system uses a synchronous generator and a invertor circuit.

  • PDF

An Optimal Efficiency Control of Reluctance Synchronous Motor using Direct Torque Control (직접 토크 제어를 이용한 릴럭턴스 동기 전동기의 최대 효율제어)

  • 김남훈;김동희;노채균;김민회;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.211-220
    • /
    • 2003
  • This paper presents an implementation of direct torque control (DTC) of Reluctance Synchronous Motor (RSM) with an efficiency optimization. The equipment circuit in Reluctance Synchronous Motor which consider with iron losses is theoretically analyzed and the optimal current ration between torque current and exiting current analytically derived to drive RSM at maximum efficiency. For RSM, torque dynamics can be maintained even with controlling the flux level because a torque is directly proportional to the stator current unlike induction motor. The experimental results are presented to validate the applicability of the proposed method. The developed control system show high efficiency features with 1.0 Kw RSM having 2.57 ratio of d/q reluctance.

Design of a Thermal Energy Harvesting Circuit with MPPT Control (MPPT 제어 기능을 갖는 열에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Kim, Su-Jin;Park, Kum-Young;Oh, Won-Seok;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2487-2494
    • /
    • 2012
  • In this paper, a thermal energy harvesting circuit with MPPT control is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the linear relationship between the open-circuit voltage of a thermoelectric generator(TEG) and its MPP voltage. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a TEG, makes the reference voltages using sampled voltage and delivers the maximum available power to load. Simulation results show that the maximum power efficiency of the designed circuit is 94%. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process, and the chip area except PAD is $1168.7{\mu}m{\times}541.3{\mu}m$.

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

Improvement of Energy Efficiency for an Omnidirectional Mobile Robot with Steerable Omnidirectional Wheels (조향 가능한 전방향 바퀴를 갖는 전방향 이동로봇의 에너지 효율 개선)

  • Song Jae-Bok;Kim Jeong-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.696-703
    • /
    • 2005
  • Since most autonomous mobile robots are powered by a battery, it is important to increase the continuous operating time without recharging. This can be achieved by improving the energy efficiency of a mobile robot, but little research on energy efficiency has been performed. This paper proposes two methods for improving the energy efficiency of an omnidirectional mobile robot.. One method is to realize a continuously variable transmission (CVT) by adopting the mechanism of steerable omnidirectional wheels. The other is the proposed steering algorithm in which wheel arrangement of the mobile robot is continuously adjusted so as to obtain the maximum energy efficiency of the motors during navigation. In addition, new omnidirectional wheels which can be transformed to the conventional wheels depending on the driving conditions are proposed to compensate for less efficient omnidirectional drive mode. Various tests show that motion control of the OMR-SOW works satisfactorily and the proposed steering algorithm for CVT can provide higher energy efficiency than the algorithm using a fixed steering angle. In addition, it is shown that the differential drive mode can give better energy efficiency than the omnidirectional drive mode.