• 제목/요약/키워드: Maximum compressive strength

검색결과 630건 처리시간 0.025초

소구경 코어에 의한 콘크리트 압축강도 추정에 미치는 골재의 영향에 관한 연구 (A Study on the Influence of Aggregate on the Estimation of Compressive Strength by Small Size Core)

  • 김경민;백병훈;한민철;윤기원;한천구;송성진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.51-54
    • /
    • 2002
  • This study is intended to investigate an influence of the kinds and the maximum size of aggregate on the compressive strength of small size core specimen. According to the results, the compressive strength of standard specimen is large in order of basalt, granite and limestone aggregate, and shows increasing tendency as the maximum size of aggregate grows large. The compressive strength of concrete using basalt aggregate shows similar tendency to granite aggregate, and that of concrete using limestone aggregate decreases slightly, compared with granite aggregate. The reducing ratio of the compressive strength of 25mm core specimen is least when the maximum size of aggregate is 10mm. But the compressive strength of 50 and 100mm core specimen is almost not influenced by the maximum size of aggregate.

  • PDF

지연제로서 전분이 시멘트혼합토에 미치는 영향 (The Effects of Starch as a Retarder in Soil Cement Mixtures)

  • 김재영
    • 한국농공학회지
    • /
    • 제18권3호
    • /
    • pp.4163-4170
    • /
    • 1976
  • This study was conducted to investigate the effect of starch as a retarder on the maximum dry density and the unconfined compressive strength of soil cement mixtures for varied starch contents (0-3%), cement contents (3-12%), and delay times (0-6hrs) in four soils. The experimental results obtained from maximum dry density and unconfined compressive strength tests are as follows: 1. Maximum dry density and unconfined compressive strength were increased greatly in soil cement mixtues rwhen starch was added as retarder but their value schanged according to soil varieties. 2. Maximum dry density showed at about 0.5 percent to 1.0 percent of starch in KY soil and about 2.0 percent to 2.5 percent in SS soil when delay time was changed in 2.4, and 6 hours in compaction test. 3. The larger content of cement was, the bigger effects of maximum dry density and compressive strength were in soil cement. mixtures. 4. As delay time changed 2.4, and 6 hours in compaction test, 7-day unconfined compressive strength showed the biggest value at about 0.5 percent of starch in KY soil and 2.0 percent in SS soil, and the maximum value of 28-day unconfined compressive strength showed at about 0.5 percent in KY soil and 1.5 percent in SS soil.

  • PDF

원형공을 갖는 암석의 압축강도 및 변형거동에 미치는 절리의 영향 (The influence of joints on compressive strength and deformation behavior of rock with a circular hole.)

  • 조의권;김일중;김기주;김영석
    • 터널과지하공간
    • /
    • 제7권2호
    • /
    • pp.108-115
    • /
    • 1997
  • Uniaxial and biaxial compressive tests were conducted on limestone specimens containing artificial joints and a circular hole to investigate the influence of inclination and number of joints on compressive strength and deformation behavior of rock with a circular hole. Under uniaxial and biaxial compressive condition, the inclination of joints showing the maximum and minimum strength were 0$^{\circ}$ and 30$^{\circ}$ respectively, which was independent of the number of joints. Under uniaxial compressive condition, relative maximum strength of rock with n=1 and 3 to intact rock with a circular hole were 12.5%~82.8% and 11.4~62.5% respectively, and under biaxial compressive condition, 18.2~91.0% and 17.0~87.5% respectively. The influence of the number of joints on the decrease of compressive strength was greater under uniaxial than under biaxial compressive condition. Under uniaxial and biaxial compressive condition, axial and lateral deformations of rock showed the least values where $\alpha$=30$^{\circ}$. Under uniaxial compressive condition, axial and lateral deformation at maximum strength of rock have the increasing tendency with increase the number of joints. But they have the decreasing tendency under biaxial compressive condition. Under uniaxial and biaxial compressive conditions, axial deformation of circular hole was greater than lateral deformation without respect to the number of joints and the inclination of joints.

  • PDF

부산 해성 점토의 일축압축강도 특성 및 교란도에 관한 연구 (Unconfined Compression Strengh Characteristics and Degree of Disturbance of Busan Marine Clay)

  • 김병일;이승원;이승현;조성민
    • 한국방재학회 논문집
    • /
    • 제5권4호
    • /
    • pp.29-36
    • /
    • 2005
  • 본 연구는 부산 가덕도 부근 해성점토에 대하여 일축압축시험을 실시하여 일축압축강도, 최대강도에서의 변형률, 심도와의 관계를 비교 및 분석하였으며 시료에 포함되어 있는 불순물과 시료채취시 충진율이 흙의 일축압축강도와 교란도에 미치는 영향을 파악하였다. 시험결과 시료의 일축압축강도는 최대강도에서의 변형률이 증가함에 따라 감소하는 결과를 보였으며 채취 심도가 깊을수록, 시료채취시의 충진율이 좋을수록 증가하는 추세를 보였다. 특히 시료 충진율의 증가는 일축압축강도 증가를 가져왔고 시료의 등급 또한 높여주었다.

온도변화가 흙의 다짐과 압축강도에 미치는 영향 (Temperature Effects on the Compaction and Compressive Strength of Soils)

  • 김재영
    • 한국농공학회지
    • /
    • 제15권4호
    • /
    • pp.3137-3146
    • /
    • 1973
  • This study was to investigate the effects of compaction, compressive strength and Atterberg limits in accordance with the temperatures changes. It was conducted on four soils-KJ, JJ, MH, SS-at temperatures of -1, 1, 3, 5, 7, 10, 15, 19, $22^{\circ}C$. These tests were obtained the maximum dry density and the optimum moisture content of four soils in accordance with temperature changes by using distilled water and $CaCl_2$ 10% solution, and were put to the compressive strength tests on remolded specimens of soils compacted at the optimum moisture content. The result of the study can be summarized as follows; The maximum dry density increased with an increase in temperature, and the use of $CaCl_2$ 10% solution had higher maximum dry density than distilled water. The optimum moisture content decreased with an increase in temperature, and the use of $CaCl_2$ 10% solution had lower optimum moisture content than distilled water. The maximum compressive strength was shown high peak from $7^{\circ}C\;to\;15^{\circ}C$, and the use of $CaCl_2$ 10% solution had higher maximum compressive strength than distilled water. The liquid limit and plasticity index decreased with an increased in temperature. It is estimated that the use of $CaCl_2$ 10% solution can lower the minimum compacted temperature from $2^{\circ}C\;to\;4^{\circ}C$ in low temperature.

  • PDF

국내규사(國內硅砂)를 사용(使用)한 합성사(合成砂)의 고온성질(高溫性質) (압축강도(壓縮强度), 팽장(膨張)) 에 관(關)한 연구(硏究) (A Study on the High Temperature Properties (Compressive Strength, Expansion) of Synthetic Sand using Domestic Silica Sand (Mooryang Silica Sand))

  • 이병국;이계완
    • 한국주조공학회지
    • /
    • 제2권4호
    • /
    • pp.2-8
    • /
    • 1982
  • The behavior of sand and mold at high temperatures was generally agreed to importantly affect the quality of castings made. By changing water content through 2,4,6 and 8%, and bentonite content through 5,7,9 and 11%, specimens have been made according to the respective composition. Specimens have been subjected to hot compressive strength and thermal expansion at 400, 600, 800 and $1000^{\circ}C$ respectively. The results obtained were as follows ; 1. At each temperature, thermal expansion decreased and hot compressive strength increased with the increase in water content. 2. After thermal expansion was peaked at approximately $1000^{\circ}C$ the contraction and maximum hot compressive strength appeared. 3. At each temperature, maximum hot compressive strength appeared 2%, 4,6% and 8% water content for 7%, 9% and 11% bentonite content respectively. 4. When 2% $H_2O$ was added, though bentonite content was increased, hot compressive strength did not rarely change. 5. Until the thermal expansion was completed the required time was 15-18 minutes at $400^{\circ}C$ and $600^{\circ}C$, and 10-13 minutes at $800^{\circ}C$. At $1000^{\circ}C$, the required time was 7-9 minutes in order to gain the maximum expansion, after that, contraction proceeded during 3-4 minutes before expansion was completed.

  • PDF

흙의 粒度分捕가 石灰混合土의 强度特性에 미치는 影響 (Effects of Grain Size Distribution in Soil on the Strength Characteristics of Lime-Soil Mixtures)

  • 조성정;강예묵
    • 한국농공학회지
    • /
    • 제27권2호
    • /
    • pp.57-71
    • /
    • 1985
  • The characteristics of compaction and unconfined compressive strength were investigated by mixing with lime to all soils adjusted by given percentages of two kinds of clays to sand to obtain the most effective distribution of grain size and the optimum lime content for soil stabilization. In addition, unconfined compressive strength and durability tested by adding of sodium metasilicate, sodium sulfate, sodium carbonate, sodium gydroxide and magnesium oxide to lime-soil mixture mixed with 8 percent lime to adjusted soil having the mixing percentage of 60 percent of cohesive black clay and 40 percent of sand by weight to get the effect and the optimum content of chemicals. The results obtained were as follows; 1.With the addition of more lime, the optimum moisture content was increased, and the maximum dry density was decreased, whereas the more the amount of clay and the less was the maximum drt density. 2. In the soil having more fine grain size the unconfined compressive strength was larger in the earlier stage of curing period, in accordance with the longer period, the mixing percentages of sand to clay showing the maximum unconfined compressive strength, on the basis of 28-day strength, were 60% : 40% (black clay) and 40% : 60% (brown clay) respectively. 3. The reason why the soil adjusted with black clay was remarkably bigger in the unconfined compressive strength than ones adjusted with brown clay for all specimen of lime-soil mixture was the difference in the kind of clay, the amount of chemical compositions the value of pH. Black clay was mainly composed of halloysite that reacted with lime satisfactorily, whereas the main composition of brown clay was kaolinite that was less effect in the enhance of unconfined compressive strength. Also the difference of unconfined compressive strength was because black clay was larger in the amount of composition of calcium oxide and magnesium oxide in the value of pH affecting directly on the unconfined compressive strength of lime-soil mixture than brown clay. 4. In the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40%, on the standard of 7-day strength, the effect of chemical was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium hydroxide and sodium metasilicate. 5. The optimum amount of chemical being applicable to the maximum unconfined compressive strength of lime-chemical-soil mixture was 1 percent by weight for air dry soil in the case of adding sodium carbonated and 0.75 percent on sodium hydroxide, the unconfined compressive strength was increased continuously with increase of the amount of chemical up to 2 percent of chemical content is the lime-chemical-soil mixture added sodium metasilicate, sodium sulfate and magnesium oxide. 6. It was considered that the chemical played and accelerant role of early revelation of strength because the rate of increase of unconfined compressive strength of all of lime-chemical-soil mixtures was largest on the 7-day cured specimen. 7. The effect of test on freezing and thawing after adding suitable amount of chemical on the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40% was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium metasilicate and sodium hydroxide.

  • PDF

An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading

  • Choi, Byong Jeong;Han, Hong Soo
    • Steel and Composite Structures
    • /
    • 제9권6호
    • /
    • pp.519-534
    • /
    • 2009
  • This study intends to examine the characteristics of compressive behavior and conducts comparative analysis between normal compressive strength under existing equations (LRFD, ACI 318, EC 4) and experimental the maximum compressive strength from the compression experiment for the unstiffened steel plate-concrete structures. The six specimens were made to evaluate the constraining factor (${\xi}$) and width ratio (${\beta}$) effects subjected to the compressive monotonic loading. Based on this experiments, the following conclusions could be made: first, compressive behaviors of the specimens from the finite element analysis closely agreed with the ones from the actual experiments; second, the higher the width ratio (${\beta}$) was, the lower the ductility index (DI) was; and third, the test results showed the maximum compressive strength with a margin by 7% compared to the existing codes.

시멘트함량 및 다짐함수비가 Soil Cement의 압축강도에 미치는 영향에 관한 연구 (A Study on the Effects of Molding Water Content and Cement Content on Unconfined Compressive Strength of Soil Cement Mixtures)

  • 김재영;강예묵
    • 한국농공학회지
    • /
    • 제17권1호
    • /
    • pp.3685-3701
    • /
    • 1975
  • This study was conducted to investigate the strength of soil cements for varied molding water content and cement content(3,6,9,12%) in four cementstabilized soils(KY: sand, MH: sad, SS: sandy loam, JJ: loam). The eoperimental results obtainedfrom unconfined compressive strength tests are asfollows: 1. The optimum moisture content increased in accordance with the increase of the cement while maximum dry density didn't change uniformly. 2. The moisture content for maximum strength was higher than the optimum moisture content in the higher cement content. Moisture-density curves showed a dull peak in the higher cement contents, on the other hand, a sharp peak in the lower cement contents. 3. In molding the specimen with the approximate optimum moisture content, the maximum strength showed at the wet side of the optimum moisture content. 4. SS and JJ maybe used as cement-stabilized base of road to require 300PSI of compressive strength cured seven days, but MH and KY may be not adequate. 5. In soil cement, the better the grain size distribution was, the stronger the compressive strength was itn general. 6. The relation between 28-day strengh and 7-day strength in the cementstabilized four soils may be expressed as follows: q28=1.55q7+1.5 in which q28:28-day strength. q7:7-day strength.

  • PDF

양생온도(養生溫度)가 혼화재(混和材)를 사용(使用)한 Mortar의 강도(强度)에 미치는 영향(影響) (Effects of the Curing Temperature on the Strength of Mortar added Admixtures)

  • 강신업;김성완
    • 농업과학연구
    • /
    • 제3권2호
    • /
    • pp.214-224
    • /
    • 1976
  • 양생온도(養生溫度)가 혼화재(混和材)를 사용(使用)한 모르터의 강도(强度)에 미치는 영향(影響)을 조사(調査)키 위해서 양생온도(養生溫度)를 $20^{\circ}C$, $30^{\circ}C$, $35^{\circ}C$로 하여 모르터의 압축(壓縮), 인장(引張), 곡강도시험(曲强度試驗)을 실시(實施)하였고 그 결과(結果)를 요약(要約)하면 다음과 같다. 양생온도(養生溫度) $1^{\circ}C$ 상승(上昇)에 대(對)한 강도증가(强度增加)는 기준강도(基準强度)에 대(對)하여 연탄재첨가시(添加時) 압축강도(壓縮强度)에서 1.58%, 인장강도(引張强度)에서 0.96%, 곡강도(曲强度)에서 1.26% 증가(增加)했다. 동일(同一)한 경우 플라이애쉬 첨가시(添加時) 압축강도(壓縮强度)에서 1.3%, 인장강도(引張强度)에서 0.99%, 곡강도(曲强度)에서 1.18%의 증가(增加)를 나타냈다. 압축강도(壓縮强度)는 플라이애쉬 첨가량(添加量) 25%에서 인장강도(引張强度)는 20%, 곡강도(曲强度)도 20%에서 최대치(最大値)를 나타냈다. 연탄재를 혼합(混合)한 경우 압축강도(壓縮强度)에서 20% 인장강도(引張强度)에서 15~20%, 곡강도(曲强度)에서 20% 첨가(添加)할 때 최대치(最大値)를 나타냈다. 연탄재 첨가(添加)의 경우가 플라이애쉬 첨가(添加)의 경우 보다 저강도(低强度)이나 양생온도(養生溫度)의 조절(調節)로 소요(所要)의 강도(强度)를 얻을수 있기 때문에 혼화재(混和材)로서 개발(開發)할 여지(餘地)가 충분(充分)히 있는 것으로 사료(思料)된다.

  • PDF