• Title/Summary/Keyword: Maximum compression ratio

Search Result 237, Processing Time 0.025 seconds

Brittle rock property and damage index assessment for predicting brittle failure in underground opening (지하공동의 취성파괴 예측을 위한 암석물성 및 손상지수 평가)

  • Lee, Kang-Hyun;Bang, Joon-Ho;Kim, Jin-Ha;Kim, Sang-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.327-351
    • /
    • 2009
  • Laboratory tests are performed in this paper to investigate the brittle failure characteristics of over-stressed rocks taken in deep depth. Also, numerical simulation performed using that the so-called CWFS(Cohesion Weakening Frictional Strengthening) model is known to predict brittle failure phenomenon reasonably well. The most typical rock types of Korean peninsula - granite and gneiss - were used for testing. Results of uniaxial compression tests showed that the crack initiation stress was about 41 % to 42% of the uniaxial compressive strength regardless of rock types, where as, the crack damage stress of granite was about 75%, and that of gneiss was about 97%. Through the damage-controlled test, strength parameters of each rock were obtained as a function of damage degree. After the peak, the crack damage stress and the maximum stress were decreased, The cohesion was decreased and the friction angle was increased with increase of rock damage. Before reaching the peak, the elastic modulus was slightly increased, while decreased after the peak. Poisson's ratio was increased as the damage of rock proceeds. Comparison of uniaxial compression tests and damage-controlled tests shows the crack initiation stress estimated from the damage-controlled test fluctuated within the range of crack initiation stress obtained from the uniaxial compression test; the crack damage stress was less than that estimated from the uniaxial compression test. In order to predict the critical depth that brittle failure occurs, numerical simulations using the CWFS model were performed for an example site. Material parameters obtained from the laboratory tests mentioned above were used for CWFS simulation. Comparison between the critical depth predicted from the numerical simulation using the CWFS model and that predicted by using the damage index proposed by Martin et al.(l999), showed that critical depth cannot be reasonably predicted by the currently used damage index except for circular tunnels. A modified damage index was proposed by the author which takes the shape of tunnels other than circular into account.

Impact Evaluation of Rubber Type, Hardness and Induced Prestress Force on the Dynamic Properties of a Damper (감쇠장치의 동적특성에 대한 고무의 종류, 경도 및 프리스트레스력의 영향 평가)

  • Im, Chae-Rim;Yang, Keun-Hyeok;Mun, Ju-Hyun;Won, Eun-Bee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.167-174
    • /
    • 2022
  • The objective of this study is to evaluate the dynamic properties of DUS (damping-up system) composed of the materials with excellent damping capacity, and to compare with those of the conventional hangar bolt. The main parameters are the type and hardness (𝜂H), of rubber and the prestress force (value converted from the compression strain (𝜂R) in the stress-strain relationship of rubber). The dynamic properties were examined from the natural frequency (𝜔n), maximum response acceleration (Am), amplification coefficient (𝛼p), maximum relative displacement (𝚫m), and damping ratio (𝜉D). The test results showed that the Am, 𝛼p, and 𝚫m values of DUS were 46.3%, 46.6% and 62.9% lower, respectively, and the 𝜉D value was 3.89 times higher, when compared to those of the conventional hangar bolt. In particular, the 𝛼p value was 1.3 for DUS, and 2.45 for the conventional hanger bolt, which were similar to those of rigid and flexible components specified in KDS 41 17 00, respectively. Consequently, in the optimal details of DUS, the 𝜂H values of 50 and 45 were required for the NR (natural rubber) and EPDM (ethylene propylene diene monomer), and the 𝜂R value of 5% was also recommended.

Bit-serial Discrete Wavelet Transform Filter Design (비트 시리얼 이산 웨이블렛 변환 필터 설계)

  • Park Tae geun;Kim Ju young;Noh Jun rye
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.336-344
    • /
    • 2005
  • Discrete Wavelet Transform(DWT) is the oncoming generation of compression technique that has been selected for MPEG4 and JEPG2000, because it has no blocking effects and efficiently determines frequency property of temporary time. In this paper, we propose an efficient bit-serial architecture for the low-power and low-complexity DWT filter, employing two-channel QMF(Qudracture Mirror Filter) PR(Perfect Reconstruction) lattice filter. The filter consists of four lattices(filter length=8) and we determine the quantization bit for the coefficients by the fixed-length PSNR(peak-signal-to-noise ratio) analysis and propose the architecture of the bit-serial multiplier with the fixed coefficient. The CSD encoding for the coefficients is adopted to minimize the number of non-zero bits, thus reduces the hardware complexity. The proposed folded 1D DWT architecture processes the other resolution levels during idle periods by decimations and its efficient scheduling is proposed. The proposed architecture requires only flip-flops and full-adders. The proposed architecture has been designed and verified by VerilogHDL and synthesized by Synopsys Design Compiler with a Hynix 0.35$\mu$m STD cell library. The maximum operating frequency is 200MHz and the throughput is 175Mbps with 16 clock latencies.

Field Appliciability Evaluation of Eco-friendly Mixed Soil (친환경 혼합토의 현장적용성 평가)

  • Park, Kyungsik;Oh, Sewook;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • In the present study, it were performed an unconfined compression test and a field applicability test according to a mixed ratio of SS, soil type and curing period to analyze strength and deformation characteristic in order to evaluate engineering characteristics of soil mixed pavements using the eco-friendly soil stabilizer (SS). The test results revealed that SS mixed soil shows fast strength development at the initial curing time while 28-day strength amounted for 97% of the final strength. Furthermore, coarse-grained dredged sand (DS) and weathered granitic soil (WGS) have a larger ratio of deformation coefficient with respect to unconfined compressive strength than fine-grained dredged clay (DC) and organic soil (OS). Moreover, a comparison test between natural and forced drying conditions was conducted and test result showed 54% to 67% of strength degradation while having 55% to 63% of strength degradation in the freezing and thawing test result. Finally, a repeated loading test result showed that DS experiences up to 35% of strength reduction compared to initial strength under 10,000 times loading in maximum. Thus, it was validated that an appropriate amount of fine-grained sand is necessary to secure resistance capability to repeated loading.

Bulk Properties of Red Pepper Powder by Drying Method and Variety (품종과 건조방법에 따른 고춧가루의 집단 특성)

  • Kang, Yu-Ri;Lee, Sang-Hoon;Kim, Hyun-Young;Woo, Koan-Sik;Hwang, In-Guk;Hwang, Young;Yoo, Seon-Mi;Kim, Haeng-Ran;Kim, Hae-Young;Lee, Jun-Soo;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1320-1325
    • /
    • 2012
  • This study investigated the bulk properties of red pepper powders according to drying method and variety. Bulk density, compressive characteristics, irrecoverable work, dynamic angle, and stress relaxation were investigated. Loose bulk density ranged between 0.420 $g/cm^3$ for Cheongyang cultivar and 0.427 $g/cm^3$ for Hanbando cultivar by hot-air drying. The highest tapped bulk density was 0.586 $g/cm^3$ for Hanbando cultivar by far-infrared drying and the lowest value was 0.523 $g/cm^3$ for Hanbando cultivar by sun drying. Hausner ratio reached a maximum value of 1.370 for Hanbando cultivar by far-infrared drying. Compressibility ranged between 0.0016 for Cheongyang cultivar by sun drying and 0.0023 for Hanbando cultivar by far-infrared drying. Compression ratio reached a maximum value of 1.032 for Hanbando cultivar by hot-air drying. Dynamic angle of repose ranged between 37.47 and $42.97^{\circ}$. Irrecoverable work ranged between 76.0 and 81.7%. Relaxation reached a maximum value of 24.31% for Cheongyang cultivar by far-infrared drying.

A Reliability Analysis of Shallow Foundations using a Single-Mode Performance Function (단일형 거동함수에 의한 얕은 기초의 신뢰도 해석 -임해퇴적층의 토성자료를 중심으로-)

  • 김용필;임병조
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.27-44
    • /
    • 1986
  • The measured soil data are analyzed to the descriptive statistics and classified into the four models of uncorrelated-normal (UNNO), uncorrelated-nonnormal (VNNN), correlatedonnormal(CONN), and correlated-nonnormal(CONN) . This paper presents the comparisons of reliability index and check points using the advanced first-order second-moment method with respect to the four models as well as BASIC Program. A sin91e-mode Performance function is consisted of the basic design variables of bearing capacity and settlements on shallow foundations and input the above analyzed soil informations. The main conclusions obtained in this study are summarized as follows: 1. In the bearing capacity mode, cohesion and bearing-capacity factors by C-U test are accepted for normal and lognormal distribution, respectively, and negatively low correlated to each other. Since the reliability index of the CONN model is the lowest one of the four model, which could be recommended a reliability.based design, whereas the other model might overestimate the geotechnical conditions. 2. In the case of settlements mode, the virgin compression ratio and preccnsolidation pressure are fitted for normal and lognormal distribution, respectively. Constraining settlements to the lower ones computed by deterministic method, The CONN model is the lowest reliability of the four models.

  • PDF

A Study on the Settlement Characteristics of Fill Dam (FILL DAM의 침하특성(沈下特性)에 관(關)한 연구(硏究))

  • Moon, Tae Wan;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.282-291
    • /
    • 1985
  • In order to investigate the settlement characteristics of fill dam with decomposed granite is used as a embankment material instead of conventional clay collected behavoir of Andong dam and analyzed. Andong dam is the use of decomposed granite in the embankment material, and various type of gauges were installed in dam to measure a pore pressure, interval vertical settlement, dam crest settlement, relative settlement, surface settlement and internal horizontal movement. The results were summerized as follows; 1. With the increase of embankment loading, the settlement of core zone during construction increased with linear and under the effective stress $7kg/cm^2$ vertical settlement ratio ranged between 0.1 and 0.8% approximately and showed smaller value than that of fill dam with clay were used as a embankment material. 2. Though embankment loading was increased with about over central part of embankment height, the settlement of core zone in the lower part of the embankment was influenced slightly. 3. Pore pressure responsed sensitively with the increase of coefficient of permeability in core zone and settlement increased with pore pressure were dispersed. 4. During construction relative settlement in the lower part of the embankment has the largest influence on magnitude of the relative density and after construction settlement showed larger value in the core zone which has the largest compression height. 5. Settlement distribution of dam crest showed larger value in the central part, maximum section of dam, but smaller value in near the abutment.

  • PDF

Mechanical Properties And Chlorde Penetration Resistance of Shotcrete according to Mineral Admixture Types and Supplemental Ratio (광물성 혼화재료의 종류 및 혼입율에 따른 숏크리트의 역학적 특성 및 염해 저항성)

  • Han, Seung-Yeon;Yun, Kyong-Ku;Nam, Kyeong-Gung;Lee, Kyeo-Re;Eum, Young-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4960-4968
    • /
    • 2015
  • In this study to improve the chloride durability of the shotcrete structure depending on types and contents of mineral admixture chloride resistance was evaluated by NT BUILD 492 of european test standards. It was also evaluated with the mechanical properties such as static strength and chloride penetration resistance. For shotcrete mixed crushed stone aggregate of the maximum size 10mm of coarse aggregates was produced. Based on 28days compression strength the variable mixed with 15% silica fume showed the highest strength in 67.55MPa. As the content of fly ash and blast furnace slag increased, the strength lowered. In the chloride penetration resistance test, OPC showed "high grade" and In the case of admixture, the penetration resistance tended to increase in all variables except the fly ash. In order to evaluate the service life, the accelerated chloride penetration test was conducted by the standards of KCL, ACI, FIB. Test results were obtained with the lowest spreading factor in a variable mixed with silica fume of 15%. At the KCI standards, It was found to have a service life of about 65 years and at the FIB standards, It was found to have a service life of 131 years. Among standards, the service life of KCI standard in all of the variables was evaluated as the lowest.

The High Temperature Deformation Behavior of the Wrought Superalloy 718 (단조용 초내열 718 합금의 고온 변형 거동)

  • Na, Y.S.;Choe, S.J.;Kim, H.M.
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.179-191
    • /
    • 1996
  • In order to understand the high temperature deformation behavior of superalloy 718, a rotating grade 718 alloy has been compression tested to about 0.7 upset ratio at $927{\sim}1066^{\circ}C$ temperature range and $5{\times}10^{-4}{\sim}5{\times}10^0sec^{-1}$ strain rate. The maximum flow stress was increased with increasing strain rate, and similar behavior was observed with decreasing temperature. At low temperature and high strain rates other than $5{\times}10^{-1}sec^{-1}$, strain softening was occurred mainly by dynamic recovery and deformation twinning processes, while at high temperature and low strain rates strain softening was offseted by dynamic recrystallization. At $5{\times}10^{-1}sec^{-1}$, strain hardening was occurred due to work hardening of the dynamic recrystallized grains. Strain rate sensitivity, m, was varied with strain rates. In the case of lower strain rate tests, m was measured as 0.3 and it was observed that the deformation was mainly controlled by dynamic recrystallization. At higher strain rate, m was lowered to 0.1 and the deformation was controlled by the dynamic recovery and the deformation twinning processes.

  • PDF

Utilization of Charcoal as an Environmentally Friendly Building Materials (I) - Characterization of Building Materials Prepared with Charcoal - (목탄을 이용한 친환경 건축자재 이용기술(I) - 목탄으로 제조된 건축자재의 특성 평가 -)

  • Ahn, Byoung-Jun;Jo, Tae-Su;Lee, Sung-Suk;Paik, Ki-Hyon;Kim, Sun-Ik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-545
    • /
    • 2009
  • The objective of this study was to investigate potential usage of environmentally friendly building materials, liquid mortar and dry cement mortar mixed with charcoal, based on the test of their physical and chemical properties. From the test results of physical and chemical properties of the liquid mortar mixed with charcoal, liquid mortar containing over 20% of charcoal, the consistency viscosity and the non-volatile content met a standard requirement. Drying time was delayed with increase in charcoal contents in the liquid mortar, however they were fully cured within 60 minutes in all treated levels. Other properties were acceptable at standard requirement. From the results, it was found that the proper charcoal addition level to the liquid mortar was 25%. In the results on dry cement, it was found that samples containing 5% of charcoal showed the maximum compressive strength, whereas samples containing over 20% of charcoal did not reach the minimum requirement of KS standard. Water retention ability constantly increased as the charcoal ratio increased. The conventional dry cement mortar adsorbed 59.5% of it, in the test of adsorption rate on ammonia gas, whereas cement mortar containing 10% of charcoal showed 71.6% of ammonia gas adsorption.