• 제목/요약/키워드: Maximum compression ratio

검색결과 235건 처리시간 0.029초

Compression of hollow-circular fiber-reinforced rubber bearings

  • Pinarbasi, Seval;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • 제38권3호
    • /
    • pp.361-384
    • /
    • 2011
  • Earlier studies on hollow-circular rubber bearings, all of which are conducted for steel-reinforced bearings, indicate that the hole presence not only decreases the compression modulus of the bearing but also increases the maximum shear strain developing in the bearing due to compression, both of which are basic design parameters also for fiber-reinforced rubber bearings. This paper presents analytical solutions to the compression problem of hollow-circular fiber-reinforced rubber bearings. The problem is handled using the most-recent formulation of the "pressure method". The analytical solutions are, then, used to investigate the effects of reinforcement flexibility and hole presence on bearing's compression modulus and maximum shear strain in the bearing in view of four key parameters: (i) reinforcement extensibility, (ii) hole size, (iii) bearing's shape factor and (iv) rubber compressibility. It is shown that the compression stiffness of a hollow-circular fiber-reinforced bearing may decrease considerably as reinforcement flexibility and/or hole size increases particularly if the shape factor of the bearing is high and rubber compressibility is not negligible. Numerical studies also show that the existence of even a very small hole can increase the maximum shear strain in the bearing significantly, which has to be considered in the design of such annular bearings.

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • 제7권3호
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.

LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향 (Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • 한국수소및신에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF

산소부화 압축착화기관을 이용한 메탄으로부터 수소 생산 (Hydrogen Gas Production from Methane Reforming Using Oxygen Enriched Compression Ignition Engine)

  • 임문섭;홍성인;홍명석;전영남
    • 한국대기환경학회지
    • /
    • 제23권5호
    • /
    • pp.557-562
    • /
    • 2007
  • The purpose of this paper is to investigate the reforming characteristics and maximum operating condition for the hydrogen production by methane reforming using the compression ignition engine induced partial oxidation. An dedicated compression engine used for methane reforming was decided operating range. The partial oxidation reforming was investigated with oxygen enrichment which can improve hydrogen production, compared to general reforming. Parametric screening studies were achieved as $O_2/CH_4$ ratio, total flow rate, and intake temperature. When the variations of $O_2/CH_4$ ratio, total flow rate, and intake temperature were 1.24, 208.4 L/min, and $400^{\circ}C$, respectively, the maximum operating conditions were produced hydrogen and carbon monoxide. Under the condition mentioned above, synthetic gas were $H_2\;22.77{\sim}29.22%,\;CO\;21.11{\sim}23.59%$.

급축소관을 전파하는 압축파에 관한 실험적 연구 (Experimental study on compression wave propagating in a sudden reduction duct)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1139-1148
    • /
    • 1997
  • Compression waves propagating in a high-speed railway tunnel develops large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations would cause an ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, experiments were carried out by using a shock tube with an open end. A blockage to model trains inside the tunnel was installed on the lower wall of shock tube, thus forming a sudden cross-sectional area reduction. The compression waves were obtained by the fast opening gate valve instead of a conventional diaphragm of shock tube and measured by the flush mounted pressure transducers with a high sensitivity. The experimental results were compared with the previous theoretical analyses. The results show that the ratio of the reflected to the incident compression wave at the sudden cross-sectional area reduction increases but the ratio of the passing to the incident compression wave decreases, as the incident compression wave becomes stronger. This experimental results are in good agreements with the previous theoretical ones. The maximum pressure gradient of the compression wave abruptly increases but the width of the wave front does not vary, as it passes over the sudden cross-sectional area reduction.

희박기체영역에서의 나선형 홈을 가진 원판형 드래그펌프의 배기속도에 관한 실험적 연구 (An Experimental Study on Pumping Speed of Disk-Type Drag Pumps for Spiral Channels in Rarefied Gas Flows)

  • 권명근;양성민;이승재;황영규;허중식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2101-2104
    • /
    • 2003
  • Experimental investigations are performed for the rarefied gas flows in a disk-type drag pump (DTDP). The pump considered in this paper consists of grooved spiral channel on rotors and planar stators. The flow-metre method is adopted to calculate the pumping speed. Compression ratio and pumping speeds for the nitrogen gas are measured under the inlet pressure range of $0.001{\sim}4$ Torr. The maximum of compression ratio was about 3300 for three-stage DTDP, 1000 for two-stage and 100 for single-stage DTDP at zero throughput. The number of stage influences the pumping speed of DPDT

  • PDF

사질토의 배수삼축압축시험에서의 강도특성 (Strength Characteristics in Drained Triaxial Tests on Granular Materials)

  • 장병유;송창섭
    • 한국농공학회지
    • /
    • 제34권3호
    • /
    • pp.33-42
    • /
    • 1992
  • The shear strength of cohesionless Soils results from particle-to-particle friction and structural resistance by interlocking. And, the shear strength of soils is subjected to vary depending on the internal states and external condtions. If the volume change occurring in the soils and stress-strain relationships under the internal and external changes can accrurately he described, it is possible to predict the behaviors of soils. To accomplish these objectives a series of drained triaxial compression tests and isotropic compression test was performed on the Banwol sand at different relative densities ranging from 20% to 80% and different confining pressures ranging from 0.4kgf/cm$^2$ to l2kgf/cm$^2$. The results and main conclusions of the study are summarized as follows; 1.When the relative density or the confining pressure is increased, the maximum deviator stress is increased. The ratio of the maximum deviator stress and the confining pressure is linearly proportional to the relative density. 2.It is observed that the dilatancy depends not only upon its relative density but also the confining stress, and that the maximum deviator stress is obtained after the diatancy occurs. 3.The volume of sands undergoes initial contraction prior to the dilatancy occurred by strain softening. The dilatancy rate eventually approaches the critical state or a constant volume. 4.At lower strains, Poisson's ratio approaches a certain minimum value regadless of the state of materials. At larger strains, however, the ratio is increased as the relative density is increased. 5.It is observed that the modulus of elasticity is linearly proportional to the relative density and the pressure. 6.When the relative density is increased, the friction angle of sands is linearly increased. 7.When the relative density is increased, the expansion index and the compression index are linearly decreased, and the ratio of the two is about 1/3.

  • PDF

재하-제하과정에서 발생하는 흙의 변형계수 및 포아송비의 특성 (Characteristics of Deformation Modulus and Poisson's Ratio of Soil by Unconfined Loading-Reloading Axial Compression Process)

  • 송창섭;김명환;김기범;박오현
    • 한국농공학회논문집
    • /
    • 제64권3호
    • /
    • pp.45-52
    • /
    • 2022
  • Prediction of soil behavior should be interpreted based on the level of axial strain in the actual ground. Recently numerical methods have been carried out focus on the state of soil failure. However considered the deformation of soil the prior to failure, mostly the small strain occurring in the elastic range is considered. As a result of calculating the deformation modulus to 50% of the maximum unconfined compression strength, Deformation modulus (E50) showed a tendency to increase according to the degree of compaction by region. The Poisson's ratio during loading-unloading was 0.63, which was higher than the literature value of 0.5. For the unconfined compression test under cyclic loading for the measurement of permanent strain, the maximum compression strength was divided into four step and the test was performed by load step. Changes in permanent strain and deformation modulus were checked by the loading-unloading test for each stage. At 90% compaction, the permanent deformation of the SM sample was 0.21 mm, 0.37 mm, 0.6 mm, and 1.35 mm. The SC samples were 0.1 mm, 0.17 mm, 0.42 mm, and 1.66 mm, and the ML samples were 0.48 mm, 0.95 mm, 1.30 mm, and 1.68 mm.

4사이클 디젤기관에 있어서 압축비가 그 성능에 미치는 영향에 대하여 (A STUDY ON THE INFLUENCE THAT THE COMPRESSION RATIO AFFECT THE EFFICIENCY OF 4 CYCLE DIESEL ENGINES)

  • 이유범
    • 한국수산과학회지
    • /
    • 제9권1호
    • /
    • pp.74-78
    • /
    • 1976
  • 연료분사시기와 회전속도를 일정하게 했을때 3종류의 연료를 사용하여 압축비와 기관의 성능관계를 조사한 결과 다음과 같은 것이 밝혀졌다. 1. 4 cycle디젤기관의 압축비는 기관마력과 연료소자율과의 관계에서 A, B, C 3종류의 연료에 대해 각각 16, 18, 19의 최적압축비가 존재했으며, 이보다 압축비를 높이면 오히려 기관성능이 저하하고 최대출력도 감소한다. 2. 매시공급열량을 일정하게 했을때 연료 A, B에 대해서 16, 18의 최적압축비가 존재했으며 연료 C에 대해서는 정할수 없었다. 따라서 저 cetane number의 연료에서는 출력에 관계없이 가장 좋은 압축비는 결정할 수 없었다. 3. 발화지연은 압축비가 높을 수록 작았고, 감소율은 압축비가 클수록 작았다.

  • PDF

시료의 두께, 하중증가율 밀 재하시간이 압밀특성에 미치는 영향 (Studies on the Influence of Sample thickness, Load Increment Ratio and Load Increment Duration on Consolidation Characteristics.)

  • 류능환;강예묵
    • 한국농공학회지
    • /
    • 제20권3호
    • /
    • pp.4750-4770
    • /
    • 1978
  • Under the various variations of the sample thickness, the load increment ratio and the load increment duration, this consolidation test of the clay in the Asan Bay was tried for the comparison with the standard consolidation test. The results gained are as follows; 1. The void ratio variations of the leached-clay samples were increasingly high, according as the sample thickness thinned and the load increment duration and the laod increment ratio increased. 2. The coefficient of consolidation were increased with the increment of the sample thickness, of the load increment ratio and of the load increment duration. Near the pre-consolidation load, the coefficient of secondary consolidation had the maximum value and lessened with the increment of the sample thicknss, and of the load increment duration 3. The value of the pre-consolidation load increased in proportion to the increment of the sample thickness and the decrease of the load increment ratio and the load increment duration. 4. The compression indices increased as the increment of load increased and decreased as the sample thickness increased. 5. The initial compression ratio increased as the sample thickness, the load increment ratio and the load increment duration decreased. The ratio of primary compression to the secondary decreased with the increment of the sample thickness and of the load increment ratio. 6. The time at the completion of psimary consolidation increased with the increment of the sample thickness and of the consolidation load, and with the decrease of the load increment ratio. 7. The compression indicses increaed as the sample thickness lessened and decreased as the load increment ratio increased. The coefficient of consolidation increased according as the sample thickness, the load increment ratio and the load increment duration went up. The settlement at the construction site should be calculated highly in proportion as the sample thickness lessened and the load increment ratio increased. The consolidation ratio is thought to be accelerated if the sample thickness and the load increment ratio becomes higher and the load increment duration longer.

  • PDF