• Title/Summary/Keyword: Maximum boost PWM

Search Result 26, Processing Time 0.032 seconds

The Control Characteristics of PV System Using Discrete Data Signal (이산치 신호를 이용한 PV시스템의 제어특성)

  • 김동휘;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.93-96
    • /
    • 1999
  • Solar cell generate DC power from sunlight whose power is different at any instance according to condition of variables : insolation and temperature. In order to improve the system utility factor and efficiency of energy conversion, it is desirable to operate the PV system at maximum power point of solar cell under different condition. In this paper, Boost chopper is controlled it output voltage with a new discrete control algorithm for MPPT. PWM signal of DC-DC converter are generated with a 89C51 microcontroller. Switching frequency of DC-DC converter is set at 10KHz. Simulation and experimental results show that the PV system studied in this paper is always operated at maximum power point under different maximum power point of solar cells having stabilized output voltage waveform with relatively small ripple component

  • PDF

Design of Single-Inductor Dual-Output Boost-Boost DC-DC Converter with Dual Feedback Loop Based on Relative Sawtooth Generator (Dead-time을 갖는 톱니파 발생기를 이용한 이중 피드백 루프 기반 단일 인덕터 이중 출력 승압형 변압기 설계)

  • Yun, Dam;Kim, Dong-Young;Lee, Kang-Yoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.220-227
    • /
    • 2014
  • This paper presents a control method of Single-Inductor Dual-Output DC-DC Converter using Common mode feedback and differential feedback loops. To generate duty used for differential mode feedback loop, this paper propose relative sawtooth circuit using current divider circuit which makes ramp signal with variable dead-time. Two outputs of the Single-Inductor Dual-Output DC-DC Converter are specified for 2.8 V and 4.2 V with input voltage 2.5 V. The maximum conversion efficiency of designed SIDO DC-DC Converter is 95% at total output power of 539mW. Cross regulations of Boost1 and Boost2 are 3.57% and 4% each, when increasing twice times output current.

Design of a High-Efficiency CMOS DC-DC Boost Converter Using a Current-Sensing Feedback Method (전류 감지 Feedback 기법을 사용한 고효율 CMOS DC-DC Boost 변환기의 설계)

  • Jung Kyung-Soo;Yang Hui-Kwan;Cha Sang-Hyun;Lim Jin-Up;Choi Joong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.23-30
    • /
    • 2006
  • This paper presents a design of a high-efficiency CMOS DC-DC boost converter using a current-sensing feedback method. High-precision current-sensing circuity is incorporated in order to sense the current flowing in the inductor, which determines the switching scheme of the pulse-width modulation. The external components or large chip area for the frequency compensation can be avoided while maintaining the stable operations of the converter. Various input/output voltage levels can be available through the external resistor strings. The designed DC-DC converter is fabricated in a 0.18-um CMOS technology with a thick-gate oxide option. The converter shows the maximum efficiency over 90% for the output voltage of 3.3V and load current larger than 200mA. The load regulation is 1.15% for the load current change of 100mA.

A dual-loop boost-converter LED driver IC with temperature compensation (온도 보상 및 듀얼 루프를 이용한 부스트 컨버터 LED 드라이버 IC)

  • Park, Ji-Hoon;Yoon, Seong-Jin;Hwang, In-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.29-36
    • /
    • 2015
  • This paper presents an LED backlight driver IC consisting of three linear current regulators and an output-voltage regulation loop with a self-adjustable reference voltage. In the proposed LED driver, the output voltage is controlled by dual feedback loops. The first loop senses and controls the output voltage, and the second loop senses the voltage drop of the linear current regulator and adjusts the reference voltage. With these feedback loops, the voltage drop of the linear current regulator is maintained at a minimum value, at which the driver efficiency is maximized. The output of the driver is a three-channel LED setup with four LEDs in each channel. The luminance is adjusted by the PWM dimming signal. The proposed driver is designed by a $0.35-{\mu}m$ 60-V high-voltage process, resulting in an experimental maximum efficiency of approximately 85%.

LED Backlight Driving Circuits and Dimming Method

  • Kwon, Oh-Kyong;Jung, Young-Ho;Lee, Yong-Hak;Cho, Hyun-Suk;Nam, Ki-Soo;In, Hai-Jung
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.173-181
    • /
    • 2010
  • In this paper, light-emitting-diode (LED) backlight driving circuits and dimming method for medium-sized and large liquid crystal displays (LCDs) are proposed. The double loop control method, the intelligent-phase-shifted PWM dimming method, the fast-switching current regulator, and the current matching techniques are proposed to improve not only the current regulation characteristics and the power efficiency but also the current matching characteristics and the transient response of the LED current. The brightness of the backlight using the proposed local dimming method was determined from the histogram of the local block to reduce the power consumption of the backlight without image distortion. The measured maximum power efficiency of the LED backlight driving circuit for medium-sized LCDs was 90%, and the simulation results showed an 88% maximum power efficiency of the LED backlight driving circuit for large LCDs. The maximum backlight power-saving ratio of the proposed dimming method was 41.7% in the simulation with a high-contrast image. The experiment and simulation results showed that the performance of LEDs as LCD backlight units (BLUs) improved with the proposed circuits and method.

Study on Grid-Connected Photovoltaic System using Current-Source Inverter (전류형 인버터를 이용한 계통 연계형 태양광 발전 시스템에 관한 연구)

  • Lim, J.M.;Park, S.J.;Lee, S.H.;Moon, C.J.;Choi, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.677-681
    • /
    • 2005
  • This Paper presents a 6 pulse shift operation control mode of current-source-inverter to make improvement of efficiency and to reduce the frequency of inverter switching for photovoltaic generation system using PWM current-source-inverter. This system is connected solar cell energy directly without using a storage cell. The proposed circuit can maintain maximum voltage of photovoltaic generation of take advantage of six Buck-Boost converter and a full-bridge inverter determines the polarity of AC output. That is controlled by using digital signal processor TMS320F2812 for operation about a 6 pulse shift operation control of current-source-inverter, and it is verified through the experimental results.

  • PDF