• Title/Summary/Keyword: Maximum amplitude

Search Result 757, Processing Time 0.028 seconds

Maximum Likelihood Classifier Using Detection of Amplitude Modulation Frequency due to Propulsion of Underwater Vehicle (수중 프로펠러 추진체에 의한 진폭변조 신호의 주파수 탐지에 의한 Maximum Likelihood Classifier)

  • 강성현;김의준;윤원식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.47-53
    • /
    • 2000
  • In order to classify the underwater vehicles due to propeller propulsion, maximum likelihood classifier was developed. Propeller produces the cavitation and noise during its work. Cavitation-bubble makes the nonlinear medium in the water. The nonlinearity of cavitation leads to the generation of a complete spectrum of combination harmonics of the tonals of noise, and modulation of cavitation noise with propeller shaft-rates and blade-rates. The optimal estimator was derived mathematically and its capabilities were proven by simulation and real test.

  • PDF

Blind Channel Estimator based on the RLS algorithm (RLS 알고리즘에 기반을 둔 블라인드 채널 추정)

  • 서우정;하판봉;윤태성
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.655-658
    • /
    • 1999
  • In this study, We derived Recursive Least Squares(RLS) algorithm with adaptive maximum -likelihood channel estimate for digital pulse amplitude modulated sequence in the presence of intersymbol interference and additive white Gaussian noise. RLS algorithms have better convergence characteristics than conventional algorithms, LMS Least Mean Squares) algorithms.

  • PDF

Experimental study on the tension of cables and motion of tunnel element for an immersed tunnel element under wind, current and wave

  • Wu, Hao;Rheem, Chang-Kyu;Chen, Wei;Xu, Shuangxi;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.889-901
    • /
    • 2021
  • The tension of cables and motion response significantly affect safety of an immersed tunnel element in the immersion process. To investigate those, a hydrodynamic scale-model test was carried out and the model experiments was conducted under wind, current and wave loads simultaneously. The immersion standby (the process that the position of the immersed tunnel element should be located before the immersion process) and immersion process conditions have been conducted and illustrated. At the immersion standby conditions, the maximum force of the cables and motion is much larger at the side of incoming wind, wave and current, the maximum force of Element-6 (6 cables directly tie on the element) is larger than for Pontoon-8 (8 cables tie on pontoon of the element), and the flexible connection can reduce the maximum force of the mooring cables and motion of element (i.e. sway is expecting to decrease approximate 40%). The maximum force of the mooring cables increases with the increase of current speed, wave height, and water depth. The motion of immersed tunnel element increases with increase of wave height and water depth, and the current speed had little effect on it. At the immersion process condition, the maximum force of the cables decrease with the increase of immersion depth, and dramatically increase with the increase of wave height (i.e. the tension of cable F4 of pontoons at wave height of 1.5 m (83.3t) is approximately four times that at wave height of 0.8 m). The current speed has no much effect on the maximum force of the cables. The weight has little effect on the maximum force of the mooring cables, and the maximum force of hoisting cables increase with the increase of weight. The maximum value of six-freedom motion amplitude of the immersed tunnel element decreases with the increase of immersion depth, increase with the increase of current speed and wave height (i.e. the roll motion at wave height of 1.5 m is two times that at wave height of 0.8 m). The weight has little effect on the maximum motion amplitude of the immersed tunnel element. The results are significant for the immersion safety of element in engineering practical construction process.

Structural Analysis on Durability of Pedal (페달의 내구성에 대한 구조 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.88-95
    • /
    • 2011
  • In this study, the deformation, stress, vibration, fatigue life and the probability of damage are analyzed at the pedal applied by the force of 300N. The maximum stress at the lower of pedal is shown as 20.801MPa. And the maximum displacement is 0.85mm at the maximum response frequency as 3800Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{5}MPa$ and the amplitude stress of 0 to $10^{5}MPa$, the possibility of maximum damage becomes 0.6%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively improved with the design of pedal by investigating durability against its damage.

Evaluation on Structural Stability According to Steering Wheel Type (조향휠의 유형에 따른 구조안정성평가)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.733-740
    • /
    • 2012
  • This paper studies with structural and vibration analysis to evaluate the structural safety according to the types of steering wheels. This study models are two, three and four spoke types. As the number of spokes increases, the maximum equivalent stress becomes smaller but the maximum total deformation becomes a little higher. The natural frequency at three models are shown from 180 to 230Hz as the maximum deformation. The frequency responses as maximum amplitude displacement are happened at 200Hz, 500Hz and 500Hz respectively. In this study, the steering wheel with three spoke type is shown to become suitable at durability and production.

Fatigue and Vibration Analysis on Engine Parts (엔진 부품에 대한 피로 및 전동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.321-325
    • /
    • 2010
  • This study analyzes the results with the simulation of heat transfer, structural stress, fatigue and vibration on main parts of engine. The maximum temperature is shown by $300.73^{\circ}C$ on the upper part of piston with the heat transfer. Maximum total deformation or equivalent stress is shown by 65.31mm or 21364MPa respectively at the upper plane of piston with the structural analysis inclusive of heat transfer. The minimum life is shown by the cycle less than $10^7$ at the part of crankshaft with the fatigue analysis. The frequency with the maximum amplitude of deformation is shown by 14Hz. Maximum total deformation or equivalent stress is shown respectively by 93.99mm on the upper plane of piston or 42625MPa at the part connected with crack shaft and connecting rod at 14Hz. The durability of engine design can be verified by using the analysed result of this study.

A Study on Measurement of Blood Pressure by Partial Least Square Method (부분최소자승법을 이용한 혈압 측정에 관한 연구)

  • Kim, Yong-Joo;Nam, Eun-Hye;Choi, Chang-Hyun;Kim, Jong-Deok
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.438-445
    • /
    • 2008
  • The purpose of this study was to develop a measurement model based on PLS (Partial least square) method for blood pressures. Measurement system for blood pressure signals consisted of pressure sensor, va interface and embedded module. A mercury sphygmomanometer was connected with the measurement system through 3-way stopcock and used as reference of blood pressures. The blood pressure signals of 20 subjects were measured and tests were repeated 5 times per each subject. Total of 100 data were divided into a calibration set and a prediction set. The PLS models were developed to determine the systolic and the diastolic blood pressures. The PLS models were evaluated by the standard methods of the British Hypertension Society (BHS) protocol and the American Association for the Advancement of Medical Instrumentation (AAMI). The results of the PLS models were compared with those of MAA (maximum amplitude algorithm). The measured blood pressures with PLS method were highly correlated to those with a mercury sphygmomanometer in the systolic ($R^2=0.85$) and the diastolic blood pressure ($R^2=0.84$). The results showed that the PLS models were the effective tools for blood pressure measurements with high accuracy, and satisfied the standards of the BHS protocol and the AAMI.

Characteristics of Diurnal Variation of Wind over the South Korean (우리 나라의 바람 일변동 특성)

  • 송봉근;김영섭;이동인;한영호
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.475-482
    • /
    • 2000
  • The purpose of this study is to find out the temporal and spatial characteristics of the diurnal wind variation between coastal and inland areas using the hourly wind data of 58 AWS-stations in the South Korea which are collected during the 10 years from 1980. Diurnal variation is investigated by using the Fast Fourier Transform(FFT), and the wind direction in investigated by comparing C(sub)r with C(sub)v represented the constancy of wind. For the scalar wind speed, the maximum wind speed occurs in the daytime 14h to 16h. The maximum diurnal amplitude at coastal areas occurs from 12h to 16h, and is about 2 hours faster than that at inland areas. Vector mean wind speed is strong at coastal areas and Chupungnyong, Kumi, Taegu of inland areas. The diurnal variation ellipses make a right angle with coastline show that the land and sea breezes are prevailing. The constancy of wind is strong at all observations in January. In the relationship between $C_r and C_v, C_v is higher than C_r$.

  • PDF

Fatigue Durability Analysis due to the Classes of Automotive Wheels (자동차 휠의 종류별 피로 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.68-74
    • /
    • 2014
  • This study analyzes structural stress and fatigue about three types of automotive wheels. As maximum equivalent stresses at 1, 2 and 3 types become lower than the yield stress of material and deformations become minute, theses types are thought be safe on durability. Type 2 model has the most fatigue life among three kinds of types and the rest of models with fatigue lives are shown in the order of type 1 and 3. As the most fatigue frequency of type 2 model happens at the state of average stress and amplitude stress on the stress range narrower than type 1 or 3, type 2 model becomes most stable. In case of type 2 with the state near the average stress of 0 MPa and the amplitude stress of 300MPa, the possibility of maximum damage becomes 30%. This stress state can be shown as the most damage possibility. These study results can be effectively utilized with the design on automotive wheel by anticipating and investigating prevention and durability against its damage.

Comparison of the Vibration Principal Stress by Experimental and Numerical Waveform (실측 파형과 수치 파형에 의한 진동주응력 비교)

  • Hong, Woong-Ki;Song, Jeong-Un;Park, Young-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.609-615
    • /
    • 2012
  • In recent years, the development of computer technique was possible to the simulation analysis of the structure caused by ground vibration. Generally, finite element method(FEM) has been used in these structural analysis. In this study, it was calculated to the vibration energy as measuring vibration waveform, and estimated about principal stress due to medium characteristics of the ground as processing dynamic analysis by the vibration energy. The results are as follows : Firstly, the principal stress distribution in all mediums was different due to a medium condition, and the principal stress at concrete medium was represented to difference due to physical characteristics. Secondly, the principal stress by time increasing was represented to maximum amplitude within 0.03 second. And also, the principal stress after maximum amplitude was very large at concrete medium, which was considered to be formed compression or tension range at a medium boundary. Thirdly, the variation of principal stress at concrete medium was represented in the order of RC medium, NC=H medium, NC=S medium. It was considered that the vibration energy propagated fast when a medium have a big elasticity and density.