• Title/Summary/Keyword: Maximum amplitude

Search Result 757, Processing Time 0.026 seconds

Fatigue Life Prediction of Automotive Rubber Component Subjected to a Variable Amplitude Loading (가변진폭하중에서의 자동차 고무 부품의 피로 수명 예측)

  • Kim, Wan-Soo;Kim, Wan-Doo;Hong, Sung-In
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.209-216
    • /
    • 2007
  • Fatigue life prediction methodology of the rubber component made of vulcanized natural rubber under variable amplitude loadings was studied. The displacement-controlled fatigue tests were conducted at different levels and the maximum Green-Lagrange strain was selected as damage parameters. A fatigue life curve of the rubber represented by the maximum Green-Lagrange strain was determined from the nonlinear finite element analysis. The transmission load history of SAE as variable amplitude loading was used to perform the fatigue life prediction. And then a signal processing of variable loading by racetrack and simplified rainflow cycle counting methods were performed. The modified miner's rule as cumulative damage summation was used. Finally, when the gate value is 30%, the predicted fatigue life of the rubber component agreed well with the experimental fatigue lives with a factor of two.

Effects of Tropospheric Mapping Functions on GPS Data Processing

  • Won, Ji-Hye;Park, Kwan-Dong;Ha, Ji-Hyun;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • In processing space geodetic data, mapping functions are used to convert the tropospheric signal delay along the zenith direction to the line of sight direction. In this study, we compared three mapping functions by evaluating their effects on the tropospheric signal delay and position estimates in GPS data processing. The three mapping functions tested are Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), and Global Mapping Function (GMF). The tropospheric delay and height estimates from VMF1 and GMF are compared with the ones obtained with NMF. The differences among mapping functions show annual signals with the maximum occurring in February or August. To quantitatively estimate the discrepancies among mapping functions, we calculated the maximum difference and the amplitude using a curve fitting technique. Both the maximum difference and amplitude have high correlations with the latitude of the site. Also, the smallest difference was found around $30^{\circ}N$ and the amplitudes increase toward higher latitudes. In the height estimates, the choice of mapping function did not significantly affect the vertical velocity estimate, and the precision of height estimates was improved at most of the sites when VMF1 or GMF was used instead of NMF.

Structural Analysis of Engine Mounting Bracket (엔진 마운팅 브라켓의 구조해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.525-531
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the configuration of engine mount. Maximum equivalent stress or deformation is shown at bracket or case respectively. As harmonic vibration analysis, the maximum displacement amplitude is happened at 4,000Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' or 'Saw tooth' becomes most stable. In case of 'Sample history' or 'Saw tooth' with the average stress of 4,200MPa or 0MPa and the amplitude stress of -3,000MPa or 7MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 7 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on engine mount by investigating prevention and durability against its damage.

Evoked Potential Estimation using the Iterated Bispectrum and Correlation Analysis (Bispectrum 및 Correlation 을 이용한 뇌유발전위 검출)

  • Han, S.W.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.113-116
    • /
    • 1994
  • Estimation of the evoked potential using the iterated bispectrum and cross-correlation (IBC) has been tried for both simulation and real clinical data. Conventional time average (TA) method suffers from synchronization error when the latency time of the evoked potential is random, which results in poor SNR distortion in the estimation of EP waveform. Instead of EP signal average in time domain, bispectrum is used which is insensitive to time delay. The EP signal is recovered by the inverse transform of the Fourier amplitude and phase obtained from the bispectrum. The distribution of the latency time is calculated using cross-correlation between EP signal estimated by the bispectrum and the acquired signal. For the simulation. EEG noise was added to the known EP signal and the EP signal was estimated by both the conventional technique and bispectrum technique. The proposed bispectrum technique estimates EP signal more accurately than the conventional technique with respect to the maximum amplitude of a signal, full width at half maximum(FWHM). signal-to-noise-ratio, and the position of maximum peak. When applied to the real visual evoked potential(VEP) signal. bispectrum technique was able to estimate EP signal more distinctively. The distribution of the latency time may play an important role in medical diagonosis.

  • PDF

The Effect of Low-amplitude Cycles in Flight-simulation Loading (비행하중에서 피로균열진전에 미치는 미소하중의 영향)

  • Shim, Dong-Suk;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1045-1050
    • /
    • 2003
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests are conducted on 2124-T851 aluminum alloy specimens. Three test spectra are generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results are compared with the data obtained from the flight-simulation loading. The experimental results show that omission of the load ranges below 5% of the maximum load does not significantly affect crack growth behavior, because these are below the initial stress intensity factor range. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decrease, and therefore crack growth curve deviates from the crack growth data under the flight-simulation loading. To optimize the load range that can be omitted, crack growth curves are simulated by the stochastic crack growth model. The prediction shows that the omission level can be extended to 8% of the maximum load and test time can be reduced by 59%.

  • PDF

Loading Frequency Dependencies of Cyclic Shear Strength and Elastic Shear Modulus of Reconstituted Clay (재구성 점토의 반복전단강도 및 전단탄성계수의 재하 주파수 의존성)

  • Ishigaki, Shigenao;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.73-79
    • /
    • 2010
  • In the present study, the loading frequency dependencies of cyclic shear strength and elastic shear modulus of reconstituted clay were examined by performing undrained cyclic triaxial tests and undrained cyclic triaxial tests to determine deformation properties. The result of undrained cyclic triaxial test of reconstituted and saturated clay shows that a faster frequency leads to higher stress amplitude ratio, but when the frequency becomes fast up to a certain point, the stress amplitude ratio will reach its maximum limit and the frequency dependence becomes insignificant. And also, the result of undrained cyclic triaxial deformation test shows a fact that a faster loading frequency leads to higher equivalent shear modules and smaller hysteresis damping ratio, and confirms the frequency dependence of cohesive soil. Meanwhile, the result of the creep test shows that continuing creep is created in the undrained cyclic triaxial test with slow loading frequency rate, and since loading rate becomes slower at the vicinity of the maximum and the minimum deviator stress due to sine wave loading, the vicinity of the maximum and the minimum deviator stress shall be more influenced by creep.

Study on Durability by Vibration and Fatigue of the Helicopter (헬기의 진동과 피로에 대한 내구성 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • This study analyzes stress, fatigue and vibration on main rotor and body of helicopter. The maximum stress is shown on adjoint part between body and main rotor at the lower position of main rotor. As the maximum displacement amplitude is happened at 4000Hz, there is no resonance and the state of helicopter becomes safe at hovering without the abnormal air current and the disabled rotor. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample History' with the average stress of 0MPa to $-10^5MPa$ and the amplitude stress of 0MPa to $8.539{\times}10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study by using the analysis of vibration and fatigue can be effectively utilized for safe and durable design of helicopter.

Comparison of functional Images obtained by radionuclide angiocardiography and gated blood pool scan (방사성핵종 심혈관조영술의 기능적영상화에 대한 고찰)

  • Bom, Hee-Seung;Kim, Ji-Yeul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.2
    • /
    • pp.186-191
    • /
    • 1991
  • Radionuclide cardiac studies lend themselves exceptionally well to functional imaging. This is especially true for gated blood pool scan (GBP). Making functional images is also possible in radionuclide angiocardiography (RNAC). In this study we tried to validate the functional images obtained from RNAC by comparing it with GBP. Twenty three patients (16 patients with coronary artery diseases, 5 with hypertensive heart diseases, and 2 with nonspecific chest pains) underwent simultaneous RNAC and GBP at the same position (LAO $45^{\circ}$). From both studies, global ejection fraction, regional ejection fraction, phase image, amplitude image, stroke image, paradox image, maximum ejection and maximum filling rates were obtained. Global ejection fraction are almost same in both studies. Regional ejection fractions of apex and inferior portion of left ventricle calculated from RNAC are well correlated with those of GBP. Phase and paradox image, maximum ejection and maximum filling rates were obtained. Global ejection fraction are almost same in both studies. Regional ejection fractions of apex and inferior portion of left ventricle calculated from RNAC are well correlated with those of GBP. Phase and paradox images of RNAC are very similar to those of GBP. However, amplitude and stroke images are different. Regional ejection fractions of the left ventricular base, maximum ejection and maximum filling rates obtained from RNAC are significantly different from those of GBP. In conclusion, albeit all of functional images of RNAC is not same as GBP, regional walt motions and global left ventricular function are expected to be successfully analyzed by phase and paradox image and ejection fraction.

  • PDF

An Analysis of Phonetic Parameters for Individual Speakers (개별화자 음성의 특징 파라미터 분석)

  • Ko, Do-Heung
    • Speech Sciences
    • /
    • v.7 no.2
    • /
    • pp.177-189
    • /
    • 2000
  • This paper investigates how individual speakers' speech can be distinguished using acoustic parameters such as amplitude, pitch, and formant frequencies. Word samples from fifteen male speakers in their 20's in three different regions were recorded in two different modes (i.e., casual and clear speech) in quiet settings, and were analyzed with a Praat macro scrip. In order to determine individual speakers' acoustical values, the total duration of voicing segments was measured in five different timepoints. Results showed that a high correlation coefficient between $F_1\;and\;F_2$ in formant frequency was found among the speakers although there was little correlation coefficient between amplitude and pitch. Statistical grouping shows that individual speakers' voices were not reflected in regional dialects for both casual and clear speech. In addition, the difference of maximum and minimum in amplitude was about 10 dB which indicates a perceptually audible degree. These acoustic data can give some meaningful guidelines for implementing algorithms of speaker identification and speaker verification.

  • PDF

Excess Vibration Phenomena and Soundness of Drain Piping in Moisture Separator Reheat Exchanger (습분 분리 재열기 배수배관의 과도진동과 배관 건전성)

  • Kim, Yeon-Whan;Kim, Hee-Soo;Bae, Yong-Chae;Lee, Hyun;Lee, Young-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.393-398
    • /
    • 2001
  • Pulsations, vibration and stress are the basic dynamic phenomena in power plant piping systems which directly affect system reliability. These phenomena are both acoustical and mechanical in nature and are closely interrelated. It was noticed that thermodynamic parameters were changed after replacing with new type tube bundles of reheat exchanger. It was reported later that the drain piping connecting the new bundle header with the associated drain tank is regularly pulsating at about every 3 second with 13.4㎐ and 7.5mm, p-p in amplitude. This amplitude is about 6 times higher than reference level of sound piping. The results of finite element analysis of the pipeline showed that its dominant natural frequency is 13.4㎐. The soundness is predicted whether the bending dynamic stress evaluated excesses the maximum allowable high cycle fatigue stress or not by the measured amplitude of vibration.

  • PDF