• Title/Summary/Keyword: Maximum amplitude

Search Result 761, Processing Time 0.021 seconds

An Optimal Random Carrier Pulse Width Modulation Technique Based on a Genetic Algorithm

  • Xu, Jie;Nie, Zi-Ling;Zhu, Jun-Jie
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.380-388
    • /
    • 2017
  • Since the carrier sequence is not reproducible in a period of the random carrier pulse width modulation (RCPWM) and a higher harmonic spectrum amplitude is likely to affect the quality of the power supply. In addition, electromagnetic interference (EMI) and mechanical vibration will appear. To solve these problems, this paper has proposed an optimal RCPWM based on a genetic algorithm (GA). In the optimal modulation, the range of the random carrier frequency is taken as a constraint and the reciprocal of the maximum harmonic spectrum amplitude is used as a fitness function to decrease the EMI and mechanical vibration caused by the harmonics concentrated at the carrier frequency and its multiples. Since the problems of the hardware make it difficult to use in practical engineering, this paper has presented a hardware system. Simulations and experiments show that the RCPWM is effective. Studies show that the harmonic spectrum is distributed more uniformly in the frequency domain and that there is no obvious peak in the wave spectra. The proposed method is of great value to research on RCPWM and integrated power systems (IPS).

Kinematic properties of the Ursa Major Cluster

  • Kim, YoungKwang;Lee, Young Sun;Beers, Timothy C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.30.3-31
    • /
    • 2015
  • We present a kinematic analysis of 172 likely member galaxies of the Ursa Major Cluster. In order to understand the dynamical state of the cluster, we investigate the correlation of the cluster morphology with rotation, the velocity dispersion profile, and the rotation amplitude parallel to the global rotation direction. Both the minor axis and the rotation are very well-aligned with the global rotation axis in the outer region at half radius (> 0.5 $R_{max}$), but not in the inner region. The cluster exhibits low velocity dispersion and rotation amplitude profiles in the inner region, but higher in the outer. Both profiles exhibit outwardly increasing trends, suggesting an inside-out transfer of angular momentum of dark matter via violent relaxation, as revealed by a recent off-axis major-merging simulation. From Dressler-Schectman plots in the plane of galactic positions, and velocity versus position angle of galaxy, we are able to divide the Ursa Major Cluster into two substructures: Ursa Major South (UMS) and Ursa Major North (UMN). We derive a mass of $3.2{\times}10^{14}M_{\odot}$ for the cluster through the two-body analysis by the timing argument with the distance information (37 for UMN and 36 for UMS) and the spin parameter of ${\lambda}=0.049$. The two substructures appear to have passed each other 4.4 Gyr ago and are moving away to the maximum separation.

  • PDF

Electromagnetic Microactuators with the Electroplated Planar Coil Driven by Radial Magnetic Field (방사형 자기장 내의 전기도금된 평면코일을 이용한 전자기형 마이크로 액추에이터)

  • Ryu, Ji-Cheol;Gang, Tae-Gu;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.16-24
    • /
    • 2001
  • This paper presents an electromagnetic microactuator using the copper coil electroplated on the p+silicon diaphragm. The microactuator generates a vertical motion of the diaphragm using the radial direction, we propose a new actuator structure with twin magnets. The microactuator field in the radial direction, we propose a new actuator structure with twin magnets. The microactator shows a values of resonant frequency and quality factor in the ranges of 10.51${\pm}$0.22kHz and 46.6${\pm}$3.3, respectively. The twin magnet microactuator generates the maximum peak-to-peak amplitude of 4.4$\mu\textrm{m}$ for the AC rms current of 26.8mA, showing 2.4 times larger amplitude than the single magnet microactuator.

Interannual Variability and Long-term Trend of Coastal Sea Surface Temperature in Korea (한국 연안 표층수온의 경년변동과 장기변화)

  • Min, Hong-Sik;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.415-423
    • /
    • 2006
  • Interannual variation and long-term trends of coastal sea surface temperature (SST) in Korea were investigated by analyzing 27 coastal SST time series from 1969 to 2004. Long-term linear increasing trend was remarkable with the rate over $0.02^{\circ}C/year$ at almost all the stations. The slope of long-term linear trend was larger at the stations along the eastern coast than in the western and southern regions. It was also noticeable that there was a common tendency of interannual variability with the period of 3-5 years at most of the stations. SST was lower in the 1970's and early 1980's while it was higher in the 1990's and early 2000's after the increase in the late 1980's. The pattern of the interannual variability of SST was similar to that of air temperature. Increasing trend of minimum SST in winter was obvious at most stations na it was larger along the eastern coast, while the linear trend of maximum SST in summer was less definite. Therefore, the decreasing tendency of annual amplitude was mainly due to the increasing tendency of SST in winter.

Approximated MAP Algorithm for Gray Coded QAM Signals (Gray 부호화된 QAM 신호를 위한 근사화된 MAP 알고리듬)

  • Hyun, Kwang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3702-3707
    • /
    • 2009
  • In this paper, a new approximated MAP algorithm for soft bit decision from QAM symbols is proposed for Gray Coded QAM signals, based on the Max-Log-MAP and a Gray coded QAM signal can be separated into independent two Gray coded PAM signal, M-PAM on I axis with M symbols and N-PAM on Q axis with N symbols. The Max-Log-MAP used distance comparisons between symbols to get the soft bit decision instead of mathematical exponential or logarithm functions. But in accordance with the increase of the number of symbols, the number of comparisons also increase with high complexity. The proposed algorithm is used with the Euclidean distance and constituted with plain arithmetic functions, thus we can know intuitively that the algorithm has low implementing complexity comparing to conventional ones.

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • Kang S. J.;Tanahashi M.;Miyauchi T.;Lee Y. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.26-34
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Navier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to 25% of the cylinder diameter and in the case of the lock-in region it is 60%. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • KANG Shin-Jeong;TANAHASHI Mamoru;MIYAUCHI Toshio;NAM Cheong-Do;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.181-188
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Comparison of Dynamic Sorption and Hygroexpansion of Wood by Different Cyclic Hygrothermal Changing Effects

  • Yang, Tiantian;Ma, Erni
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.191-203
    • /
    • 2016
  • To investigate the dynamic sorptive and hygroexpansive behaviors of wood by different cyclic hygrothermal changing effects, poplar (populus euramericana Cv.) specimens, were exposed to dynamic sorption processes where relative humidity (RH) and temperature changed simultaneously in sinusoidal waves at 75-45% and $5-35^{\circ}C$ (condition A) and where RH changed sinusoidally at 75-45% but temperature was controlled at $20^{\circ}C$ (condition B), both for three cyclic periods of 1, 6, and 24 h. Moisture and dimensional changes measured during the cycling gave the following results: Moisture and transverse dimensional changes were generally sinusoidal. Moisture and dimensional amplitude increased with increasing cyclic period but all were lower for thicker specimens. The amplitude ratio of condition A to condition B ranged from 1.0 to 1.6 with the maximum value of 1.57 occurring at the shortest cyclic period, not as much as expected. T/R increased as cyclic period increased or specimen thickness decreased. T/R from condition B was weaker than that from condition A. Sorption and swelling hysteresis existed in both conditions. Sorption hysteresis was negatively related to cyclic period but in positive correlation with specimen thickness. Sorption hysteresis was found more obvious in condition B, while moisture sorption coefficient and humidity expansion coefficient showed the opposite results.

Influence of some key factors on material damping of steel beams

  • Wang, Yuanfeng;Pan, Yuhua;Wen, Jie;Su, Li;Mei, Shengqi
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.285-296
    • /
    • 2014
  • Material damping affects the dynamic behaviors of engineering structures considerably, but up to till now little research is maintained on influence factors of material damping. Based on the damping-stress function of steel, the material damping of steel beams is obtained by calculating the stress distribution of the beams with an analytical method. Some key influence factors of the material damping, such as boundary condition, amplitude and frequency of excitation, load position as well as the cross-sectional dimension of a steel beam are analyzed respectively. The calculated results show that even in elastic scope, material damping does not remain constant but varies with these influence factors. Although boundary condition affects material damping to some extent, such influence can be neglected when the maximum stress amplitude of the beam is less than the fatigue limit of steel. Exciting frequency, load position and cross-section dimension have great effects on the material damping of the beam which maintain the similar changing trend under different boundary conditions respectively.

Normal Mode Approach to the Stability Analysis of Rossby-Haurwitz Wave

  • Jeong, Hanbyeol;Cheong, Hyeong Bin
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.173-181
    • /
    • 2017
  • The stability of the steady Rossby-Haurwitz wave (R-H wave) in the nondivergent barotropic model (NBM) on the sphere was investigated with the normal mode method. The linearized NBM equation with respect to the R-H wave was formulated into the eigenvalue-eigenvector problem consisting of the huge sparse matrix by expanding the variables with the spherical harmonic functions. It was shown that the definite threshold R-H wave amplitude for instability could be obtained by the normal mode method. It was revealed that some unstable modes were stationary, which tend to amplify without the time change of the spatial structure. The maximum growth rate of the most unstable mode turned out to be in almost linear proportion to the R-H wave amplitude. As a whole, the growth rate of the unstable mode was found to increase with the zonal- and total-wavenumber. The most unstable mode turned out to consist of more-than-one zonal wavenumber, and in some cases, the mode exhibited a discontinuity over the local domain of weak or vanishing flow. The normal mode method developed here could be readily extended to the basic state comprised of multiple zonalwavenumber components as far as the same total wavenumber is given.