• Title/Summary/Keyword: Maximum amplitude

Search Result 761, Processing Time 0.031 seconds

Virtual Signal Injected MTPA Control for DTC Five-Phase IPMSM Drives

  • Liu, Guohai;Yang, Yuqi;Chen, Qian
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.956-967
    • /
    • 2019
  • This paper introduces a virtual signal injected maximum torque per ampere (MTPA) control strategy for direct-torque-controlled five-phase interior permanent magnet synchronous motor (IPMSM) drives. The key of the proposed method is that a high frequency signal is injected virtually into the stator flux linkage. Then the responding stator current is calculated and regulated to compensate the amplitude of the flux linkage. This is done according to the relationship between the stator current and the stator flux linkage. Since the proposed method does not inject any real signals into the motor, it does not cause any of the problems associated with high-frequency signals, such as additional copper loss and extra torque ripple. Simulation and experimental results are offered to verify the effectiveness of the proposed method.

An Experimental Study on Fatigue Life Evaluation of Welded Joints under Storm Loading (스톰 하중을 받는 용접 구조물의 피로 수명 평가에 대한 실험 연구)

  • Yoo, Chang-Hyuk;Kim, Kyung-Su;Suh, Yong-Suk;Shim, Yong-Lae;Ha, Yeong-Su;You, Won-Hyo;Choi, Hyun-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, fatigue tests are conducted for the specimens with longitudinal and transverse attachment under variable amplitude axial loading based on storm model. Considered loadings include repeated single storm, 6 or 8 storms randomly, and storms including calm sea condition while the mean stress and the maximum stress of loadings are changed. The effect of three variables are investigated; root mean square(RMS) value of stress amplitude, mean stress shift and maximum stress, which can characterize storm loading on fatigue life. In addition, experiments including calm sea loading are also carried out to investigate the effect of calm sea state. Test results are evaluated and compared with DNV-CN2005 and Matsuoka's method for the estimation of crack initiation and propagation life. To verify the validity of the criteria, the measured crack initiation lifes are compared with the specific crack length 15mm, which are calculated with beach marks.

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

A Study on Loose Part Monitoring System in Nuclear Power Plant Based on Neural Network (원전 금속파편시스템에 신경회로망 적용연구)

  • Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.227-230
    • /
    • 2002
  • The Loose Part Monitoring System(LPMS) has been designed to detect, locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal, Rising time, Half period, and Global time, they are used as the inputs to neural network. Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising Time, Half Period, Maximum amplitude. The result showed that the neural network would be applied to LPMS. Also, applying the neural network to the Practical false alarm data during startup and impact test signal at nuclear power Plant, the false alarms are reduced effectively. 1.

  • PDF

Study on the Motion of Floater Structure for Design of Wave Energy Generation in Ocean (해양 파력 발전 시스템 설계를 위한 부유체 거동에 관한 연구)

  • Li, Kui Ming;Parthasarathy, Nanjundan;Park, Young-Kyu;Jung, Ho-Yun;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.632-639
    • /
    • 2011
  • In order to design a wave energy generate system, a 6-Degree of freedom motion analysis technique was applied to the three-Dimensional CFD analysis on two floating body and the behavior was interpreted according to the nature of the incoming wave. The waves are generated by the same type of wave in the model of tank using the piston type, but due to the shallow water that is generated from the bottom of the wave energy is attenuated by Ekman boundary layer. According to the wavelength of waves generated by the result of evaluating the behavior of floating body, it is concluded that 0.3m is the maximum amplitude of wavelength of 5m, and 0.15m is the minimum amplitude of wavelength of 1m. 1.06m is the maximum distance between the two floaters of wavelength of 6m.

Adaptive Equalization Algorithm of Improved-CMA for Phase Compensation (위상 보상을 위한 개선된 CMA 적응 등화 알고리즘)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.63-68
    • /
    • 2014
  • This paper related with the I-CMA (Improved-CMA) algorithm that is possible to compensates of phase in CMA adatpve equalizer which is used for the elemination of intersymbol interference in the multipath fading and band limit characteristics of channel. The new cost function is proposed for the eliminate the amplitude and phase simulataneous by modifying the cost fuction for get the error signal in present CMA algorithm. It has a merit to the algorithm simplicities and eliminats the PLL device for phase compensation after equalization. For proving this, the recovered signal constellation that is the output of equalizer output signal and the residual isi and Maximum Distortion charateristic learning curve that are presents the convergence performance in the equalizer and the overall frequency transfer function of channel and equalizer were used. As a result of computer simulation, the I-CMA has more good compensation capability of amplitude and phas in the recovered constellation. But the convergence time is slow due to the simultaneously phase compensation.

The diffraction property of the bessel beam for defocus (Defous에 따른 bessel beam의 회절 특성)

  • 박성종;최기준;박민경;김재범;심상현;정창섭
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.101-107
    • /
    • 1995
  • To investigate the diffraction property of the Bessel beam for defocus which acts CFAP (Combined Filter of Amplitude and Phase), we calculated numerically the intensity, the radius of central spot, and the optical transfer function for the number of node of the Bessel beam when an optical system has an aberration-free or a spherical aberration. The Bessel beam has larger the maximum intensity and the OTF value for an optical system with a spherical aberration than that with an aberrationfree. Particularly, the OTF value at the point of maximum intensity for $W_{40}=3\lambda$is higher for the Bessel beam than for the Clear aperture. From these results, we know that the Bessel beam has the compensating effect. The Bessel beam also has the radius of central spot having a superresolution. We will useful for the fabrication of semiconductor device and the optical recording system using these effects.ffects.

  • PDF

Vibration Characteristics of a Synchro Clutch Coupling for Steam Turbine (증기터빈용 Synchro Clutch Coupling의 진동 특성)

  • Shim, Eung-Gu;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.3
    • /
    • pp.66-72
    • /
    • 2008
  • The vibration of steam turbine is caused by Mass unbalance, Shaft misalignment, Oil whip and rubbing etc. But in turbine which is normally operated and maintained, the Mass unbalance component possesses the greatest portion. Our power plant has two steam turbines in capacity of 200 MW and 135 MW respectively and each turbine is supported by 6 journal bearings. However, we had many difficulties because the vibration amplitude of #3 and #4 Bearings was high during the start-up and operation mode change of steam turbine. But, with this study, we completely solved the vibration problem caused by the mass unbalance of #1 steam turbine. Until a recent date, #3 and #4 bearings which support high pressure turbine for #1 steam turbine had shown about $135{\mu}m$ in vibration amplitude (sometimes it increased to $221{\mu}m$ maximum. alarm: 6 mils, trip: 9 mils) at base load. After applying the study, they decreased to about $45{\mu}m$ maximum. It is a result from that we did not change the setting value of bearing alignment and only changed the assembly position of internal parts in Synchro clutch coupling rachet wheel which links between high pressure turbine and low pressure turbine, and increased the internal gap and machining of the Pawl cage surface. In the operation of steam turbine, if the vibration value increases by 1X, we should reduce the vibration of bearing by weight balancing. However, unless the vibration of bearing is declined by the balancing, we will have to disassemble and check the component and find the cause. In this study, we researched the way to lower mass unbalance that is 1X vibration component which has the greatest portion of vibration generated by steam turbine and we got good result by applying the findings of this study.

  • PDF

The Effect of Short-term Muscle Vibration on Knee Joint Torque and Muscle Firing Patterns during a Maximal Voluntary Isometric Contraction

  • Lee, Jiseop;Song, Junkyung;Ahn, Jooeun;Park, Jaebum
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2017
  • Objective: To investigate the effect of short-term vibration frequencies on muscle force generation capabilities. Method: Six healthy participants were recruited for this study and only their dominant leg was tested. The subjects were tested under five conditions of vibration frequencies with constant amplitude: 0 Hz (no vibration), 30 Hz, 60 Hz, and 90 Hz, and the vibration amplitude was 10 mm for all frequency conditions. The vibration was applied to the rectus femoris (RF). The subjects were then instructed to maintain a steady-state isometric knee joint torque (100 Nm) for the first 6 s. After the steady-state torque production, the subjects were required to produce isometric knee joint torque by leg extension as hard as possible with a start signal within the next 3 s. The vibration was applied for ~4 s starting from 1 s before initiation of the change in the steady-state knee joint torque. Results: The results showed that the maximum voluntary torque (MVT) of the knee joint increased with the vibration frequencies. On average, the MVTs were 756.47 Nm for 0 Hz (no vibration) and 809.61 Nm for 90 Hz. There was a significant positive correlation (r = 0.71) between the MVTs and integrated electromyograms (iEMGs). Further, the co-contraction indices (CCIs) were computed, which represent the ratio of the iEMGs of the antagonist muscle to the iEMGs of all involved muscles. There was a significant negative correlation (r = 0.62) between the CCIs and MVTs, which was accompanied by a significant positive correlation (r = 0.69) between the iEMGs of the vibrated muscle (RF). There was no significant correlation between the MVTs and iEMGs of the antagonist muscle. Conclusion: The results of this study suggest that the short-term vibration on the muscle increases the level of muscle activation possibly owing to the increased Ia afferent activities, which enhances the muscle force generation capability.

Shell Partition-based Constant Modulus Algorithm (Shell 분할 기반 CMA)

  • Lee, Gi-Hun;Park, Rae-Hong;Park, Jae-Hyuk;Lee, Byung-Uk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.133-143
    • /
    • 1996
  • The constant modulus algorithm (CMA), one of the widely used blind equalization algorithms, equalizes channels using the second-order statistic of equalizer outputs. The performance of the CMA for multi-level signals such as the quadrature amplitude modulation (QAM) signal degrades because the CMA maps all signal power onto a single modulus. in this paper, to improve the equalization performance of a QAM system, we propose a shell partitioning method based on error magnitude. We assume the probability distribution of an equalizer output as Gaussian, and obtain decision boundaries by maximum likelihood estimation based on the fact that the distribution of the equalizer output power is noncentral $x^2$. The proposed CMA constructs a multi-moduli equlization system based on the fact that each shell separated by decision boundaries employs a single modulus. Computer simulation results for 32-QAM and 64-QAM show the effectiveness of the proposed algorithm.

  • PDF