• Title/Summary/Keyword: Maximum Spreading

Search Result 108, Processing Time 0.024 seconds

EFFECT OF SOLDERING CONDITION ON THE TENSILE STRENGTH OF TITANIUM SOLDER JOINT WITH 14K GOLD SOLDER (납착조건이 14K 금납을 이용한 티타늄 납착부의 인장강도에 미치는 영향)

  • Choi, Jeoung-Ho;Kim, Tae-Jo;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.3
    • /
    • pp.566-576
    • /
    • 1997
  • This study was performed to evaluate the tensile strength of solder joint in titanium and the wettability of 14K gold solder on titanium. Two pieces of titanium rod 30 mm in length and 3mm in diameter were butt-soldered with a 14K gold solder using the electric resistance heating under flux-argon atmosphere, the infrared heating under argon atmosphere, and the infrared heating under vacuum-argon atmosphere. A tensile test was performed at a crosshead speed of 0.5 mm/min, and fracture surfaces were examined by SEM. To evaluate the wettability of 14K gold solder on titanium, titanum plates of a $17{\times}17{\times}1mm$ were polished with #80-#2000 emery papers, and the spreading areas of solder 10 mg were measured by heating at 840 * for 60 seconds. The solder-matrix interface regions were etched by the solution of 10% KCN-10% (NH4)2S2O8, and analyzed by EPMA. The results obtained were summarized as follows ; 1. The maximum tensile strength was obtained when the titanium surface was polished with #2000 emery paper and soldered using the electric resistance heating under flux-argon atmosphere. Soldering strengths showed the significant difference between the electric resistance heating and the infrared heating(p<0.05). 3. The fracture surfaces showed the aspect of brittle fracture, and the failure developed along the interfaces of solder-matrix reaction zone. 4. The EPMA data for the solder-matrix interface region revealed that the diffusion of Au and Cu occurred to the titanium matrix, and the reaction zone showed the higher contents of Au, Cu and Ti than others.

  • PDF

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

A Study on Combustion Experiments of Multi Type Air-Conditioner Outdoor Units by Large Scale Calorimeter (라지스케일 칼로리미터에 의한 멀티시스템형 에어컨실외기의 연소실험에 관한 연구)

  • Min, Se-Hong;Bae, Yeon-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.168-177
    • /
    • 2011
  • The combustion test for real box of AC outdoor unit has been performed in this study in order to estimate the fire hazard in multi-system type of AC outdoor unit which is currently used for commercial use. The result showed that in test, there was explosion inside of AC outdoor unit, and flame erupted and fire spread through upper side grill. And then this fire burnt the combustibles such as wires, electronic control board, heat exchange copper plate and plastics etc inside the unit, refrigerant gas pipe was burst due to fire, and accelerated the explosion and flame eruption to outside while the refrigerant was erupting. It is found in this test that the maximum heat release rate of AC outdoor unit is 5,830 kW, the maximum internal temperature measured with infrared camera and thermocouple is $1,201^{\circ}C$, maximum ambient temperature is $881^{\circ}C$, and flame rose higher than about 5 m. It is concluded that the fire in AC outdoor unit cause fire to combustibles around the unit, and may give big damage by generating the secondary fire. It is expected that the result obtained from the test on the real object may be applied to fire realization of AC outdoor unit and estimation of fire spreading to the combustibles around in the future computer simulation.

A Study on the Control System of Maximum Demand Power Using Neural Network and Fuzzy Logic (신경망과 퍼지논리를 이용한 최대수요전력 제어시스템에 관한연구)

  • 조성원
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.420-425
    • /
    • 1999
  • The maximum demand controller is an electrical equipment installed at the consumer side of power system for monitoring the electrical energy consumed during every integrating period and preventing the target maximum demand (MD) being exceeded by disconnecting sheddable loads. By avoiding the peak loads and spreading the energy requirement the controller contributes to maximizing the utility factor of the generator systems. It results in not only saving the energy but also reducing the budget for constructing the natural base facilities by keeping thc number of generating plants ~ninimumT. he conventional MD controllers often bring about the large number of control actions during the every inteyating period and/or undesirable loaddisconnecting operations during the beginning stage of the integrating period. These make the users aviod the MD controllers. In this paper. fuzzy control technique is used to get around the disadvantages of the conventional MD control system. The proposed MD controller consists of the predictor module and the fuzzy MD control module. The proposed forecasting method uses the SOFM neural network model, differently from time series analysis, and thus it has inherent advantages of neural network such as parallel processing, generalization and robustness. The MD fuzzy controller determines the sensitivity of control action based on the time closed to the end of the integrating period and the urgency of the load interrupting action along the predicted demand reaching the target. The experimental results show that the proposed method has more accurate forecastinglcontrol performance than the previous methods.

  • PDF

A Study on the Geophysical Characteristics and Geological Structure of the Northeastern Part of the Ulleung Basin in the East Sea (동해 울릉분지 북동부지역의 지구물리학적 특성 및 지구조 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.625-636
    • /
    • 2010
  • The geophysical characteristics and geological structure of the northeastern part of the Ulleung Basin were investigated from interpretation of geophysical data including gravity, magnetic, bathymetry data, and seismic data. Relative correction was applied to reduce errors between sets of gravity and magnetic data, obtained at different times and by different equipments. The northeastern margin of the Ulleung Basin is characterized by complicated morphology consisting of volcanic islands (Ulleungdo and Dokdo), the Dokdo seamounts, and a deep pathway (Korea Gap) with the maximum depth of -2500 m. Free-air anomalies generally reflect the topography effect. There are high anomalies over the volcanic islands and the Dokdo seamounts. Except local anomalous zones of volcanic edifices, the gradual increasing of the Bouguer anomalies from the Oki Bank toward the Ulleung Basin and the Korea Gap is related to higher mantle level and denser crust in the central of the Ulleung Basin. Complicated magnetic anomalies in the study area occur over volcanic islands and seamounts. The power spectrum analysis of the Bouguer anomalies indicates that the depth to the averaged Moho discontinuity is -16.1 km. The inversion of the Bouguer anomaly shows that the Moho depth under the Korea Gap is about -16~17 km and the Moho depths towards the Oki Bank and the northwestern part of Ulleung Island are gradually deeper. The inversion result suggests that the crust of the Ulleung Basin is thicker than normal oceanic crusts. The result of 20 gravity modeling is in good agreement with the results of the power spectrum analysis and the inversion of the Bouguer anomaly. Except the volcanic edifices, the main pattern of magnetization distribution shows lineation in NE-SW. The inversion results, the 2D gravity modeling, and the magnetization distribution support possible NE-SW spreading of the Ulleung Basin proposed by other papers.

Bean Yellow Mosaic Virus and Cucumber Mosaic Virus Causing Mosaic Disease on Gladiolus in Korea (그라디오러스에 발생하는 BYMV와 CMV에 관한 연구)

  • Lee S.H.;Kim J.S.;Choi Y.M.
    • Korean journal of applied entomology
    • /
    • v.22 no.3 s.56
    • /
    • pp.198-202
    • /
    • 1983
  • A mosaic disease of gladiolus has been commonly observed with an infection rate of $43.3\%$ in the field. Bean Yellow Mosaic Virus(BYMV) produced veinal spreading lesions on Cheonopodium amaranticolor, veinal necrosis and severe leaf distortion on Phaseolus vulgaris 'Scotia' and mosaic on Vi cia faba. Cucumber Mosaic Virus(CMV) produced local lesions on C. amaranticolor, mosaic symptoms on Nicotiana glutinosa and Cucumis sativus. BYMV and CMV were transmitted by the green peach aphid. Purified BYMV and CMV had a typical maximum absorption at 260nm. In agar gel diffusion test, BYMV and CMV gave positive reaction with their homologous antiserum. The size of BYMV was 750nm in length, and CMV was 30nm in diameter.

  • PDF

A New Cooperative Signal Transmission System Based on CDMA under Rayleigh Fading Channel (레일리 페이딩 환경 하에서 CDMA 기반의 새로운 협력 신호전송 시스템)

  • Choi, Jeong-Ho;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.351-357
    • /
    • 2007
  • In this paper, we propose a new cooperative signaling structure based on CDMA to overcome both 2/3 spectrum efficiency and low diversity gain of conventional cooperative signaling through continuous overlapping of signal that each user wants to transmit. Proposed signal structure can achieve the spectrum efficiency nearly "1" by receiving additional data for next time as well as maximum diversity gain to detect data continuously at both base station and each user. The orthogonality of CDMA's spreading codes can improve performance of optimal detector by reducing inter-user channel environment and distinguishing each user. We perform the computer simulation to verify the proposed system through comparing cooperative mode and non-cooperative mode under Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

Optically Controlled Silicon MESFET Fabrication and Characterizations for Optical Modulator/Demodulator

  • Chattopadhyay, S.N.;Overton, C.B.;Vetter, S.;Azadeh, M.;Olson, B.H.;Naga, N. El
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.213-224
    • /
    • 2010
  • An optically controlled silicon MESFET (OPFET) was fabricated by diffusion process to enhance the quantum efficiency, which is the most important optoelectronic device performance usually affected by ion implantation process due to large number of process induced defects. The desired impurity distribution profile and the junction depth were obtained solely with diffusion, and etching processes monitored by atomic force microscope, spreading resistance profiling and C-V measurements. With this approach fabrication induced defects are reduced, leading to significantly improved performance. The fabricated OPFET devices showed proper I-V characteristics with desired pinch-off voltage and threshold voltage for normally-on devices. The peak photoresponsivity was obtained at 620 nm wavelength and the extracted external quantum efficiency from the photoresponse plot was found to be approximately 87.9%. This result is evidence of enhancement of device quantum efficiency fabricated by the diffusion process. It also supports the fact that the diffusion process is an extremely suitable process for fabrication of high performance optoelectronic devices. The maximum gain of OPFET at optical modulated signal was obtained at the frequency of 1 MHz with rise time and fall time approximately of 480 nS. The extracted transconductance shows the possible potential of device speed performance improvements for shorter gate length. The results support the use of a diffusion process for fabrication of high performance optoelectronic devices.

A study on the Healing Effects of UV-Day light for the healthy Leprosy Center through the ANOVA statistical analysis - Focused on 5S (Sort, Straighten, Shine, Standardize, Sustain)

  • Shaikh, Javaria Manzoor;Park, JaeSeung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.19 no.4
    • /
    • pp.7-18
    • /
    • 2013
  • Purpose: The aim of this paper is to reduce the stress and the disturbance occur in selective action of patient. This article will also help us to control spreading and reduce the order and bacteria produced by leprosy disease among the lepers. This will be achieved with the help of several variables and these variables help us on health benefits is 5S (Sort, Straighten, Shine, Standardize, Sustain) i.e. ratio of sectional morphology, lessor 90 degree angles, day light, universal design building and maximum ventilation. The replies from the questionnaire were collected based on varying levels of satisfaction and gloominess on the scale of 1-10. Methods: The multi-layer methodological framework for maximising the healing environment obtained from the observation of schemes and parameters of ANOVA: (Analysis Of Variance between five deciding factors) are. Firstly applied for the calculation of the patient's satisfaction for U.V light from sun on ECOTECT simulation, secondly the number of $90^{\circ}$ angle, along the corridors. Thirdly understanding the ways to represent people's perceptual structures and way finding with Space Syntax software. Fourthly the ratio of depth to height of the building typology and finally interviewing the subjects describing their special experiences based on scale value. The focus of this testing of human subjects was to receive data for the existence of image scheme in way-finding and to identify the mechanisms by which sun light impacts human (lepers) health. Results: AMPVA studies concluded that there is similarity between I and O plan as well as L and H plan whereas U plan was difference among the five selected architectural shapes. Implications: The purpose of this research is to show the effects of the I-type, L-type, C-type, U-type and O-type plan design, and to analyse the morphology for EBD (Evidence-Based Design) healing environment which is a universal design for Munghopir Karachi, in Pakistan.

Flame Spread Mechanism of a Blended Fuel Droplet Array at Supercritical Pressure

  • Iwahashi, Takeshi;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • Flame spread experiments of a fuel droplet array were performed using a microgravity environment. N-decane, 1-octadecene, and the blends (50% : 50% vol.) of these fuels were used and the experiments were conducted at pressures up to 5.0 MPa, which are over the critical pressure of these fuels. Observations of the flame spread phenomenon were conducted for OH radical emission images recorded using a high-speed video camera. The flame spread rates were calculated based on the time history of the spreading forehead of the OH emission images. The flame spread rate of the n-decane droplet-array decreased with pressure and had its minimum at a pressure around half of the critical pressure and then increased again with pressure. It had its maximum at a pressure over the critical pressure and then decreased gradually. The pressure dependence of flame spread rate of 1-octadecene were similar to those of n-decan, but the magnitude of the spread rate was much smaller than that of n-decane. The variation of the flame spread for the blended fuel was similar to that of n-decane in the pressure range from atmospheric pressure to near the critical pressure of the blended fuel. When the pressure increased further, it approached to that of 1-octadecene. Numerically estimated gas-liquid equilibrium states proved that almost all the fuel gas which evaporated from the droplet at ordinary pressure consisted of n-decane whereas near and over the critical pressure, the composition of the fuel gas was almost the same as that of the liquid phase, so that the effects of 1-octadecene on the flame spread rate was significant.

  • PDF