• Title/Summary/Keyword: Maximum Size of Aggregate

Search Result 131, Processing Time 0.027 seconds

Understanding the Properties of Cement Mortar with Employment of Stone Dust considering Particle Size Distribution (입도분포를 고려한 석분 사용에 따른 시멘트 모르타르 성질의 변화 이해)

  • Kang, Su-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.715-723
    • /
    • 2017
  • This study investigates the properties of a high-performance cementitious composite with partial substitution of stone dust for fine aggregate. The relationship between the properties and particle size distribution was analyzed using several analytical models. Experiments were carried out to examine the flowability, rheology, and strength of cement mortars with different stone-dust replacement ratios of 0-30 wt.%. The results showed improved flowability, lower rheological parameters (yield stress and plastic viscosity), and improved strength as the amount of stone dust increased. These results are closely related to the packing density of the solid particles in the mortar. The effect was therefore estimated by introducing an optimum particle size distribution (PSD) model for maximum packing density. The PSD with a higher amount of stone dust was closer to the optimum PSD, and the optimization was quantified using RMSE. The improvement in the PSD by the stone dust was proven to affect the flowability, strength, and plastic viscosity based on several relevant analytical models. The reduction in yield stress is related to the increase of the average particle diameter when using stone dust.

The Temporal Changes of Channel Section in Naeseongcheon River, Kyeongbuk Province (경북 내성천 하도 단면의 시계열적 변화)

  • Lee, Gwang-Ryul;Kim, Dae Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.2
    • /
    • pp.53-63
    • /
    • 2011
  • The changes and causes of channel section in Naeseongcheon River, a tributary of Nakdong River, during the long(1984~2001) and short(2009~2011) periods are analyzed. There are the declines of channel height with a maximum of approximately 2m in the most areas of the lower reaches during the past 20 years. These are thought as the influences of active aggregate collections and river dredging. The size of sand bar within the channel at the NM1 decreases greatly during the past 2 years. This may results from the decrease of sediment supply due to the Yeongju Dam construction in the upper reaches. However, the NM2 and NL2 where the natural channel are preserved experience the slight increase of height during the past 2 years. Therefore, the anthropogenic channel interferences in Naeseongcheon River have greatly influenced on the declines of channel height by the decrease of sediment supply.

Analytical Modeling of TCP Dynamics in Infrastructure-Based IEEE 802.11 WLANs

  • Yu, Jeong-Gyun;Choi, Sung-Hyun;Qiao, Daji
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.518-528
    • /
    • 2009
  • IEEE 802.11 wireless local area network (WLAN) has become the prevailing solution for wireless Internet access while transport control protocol (TCP) is the dominant transport-layer protocol in the Internet. It is known that, in an infrastructure-based WLAN with multiple stations carrying long-lived TCP flows, the number of TCP stations that are actively contending to access the wireless channel remains very small. Hence, the aggregate TCP throughput is basically independent of the total number of TCP stations. This phenomenon is due to the closed-loop nature of TCP flow control and the bottleneck downlink (i.e., access point-to-station) transmissions in infrastructure-based WLANs. In this paper, we develop a comprehensive analytical model to study TCP dynamics in infrastructure-based 802.11 WLANs. We calculate the average number of active TCP stations and the aggregate TCP throughput using our model for given total number of TCP stations and the maximum TCP receive window size. We find out that the default minimum contention window sizes specified in the standards (i.e., 31 and 15 for 802.11b and 802.11a, respectively) are not optimal in terms of TCP throughput maximization. Via ns-2 simulation, we verify the correctness of our analytical model and study the effects of some of the simplifying assumptions employed in the model. Simulation results show that our model is reasonably accurate, particularly when the wireline delay is small and/or the packet loss rate is low.

Proposals for Revision of Lightweight Aggregate Concrete Specifications Based on In-situ Quality Control on Concrete (현장 품질관리를 고려한 경량골재 콘크리트의 시방서 개정안에 대한 고찰)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • This study examined the reliability and revision necessity of concrete standard specifications based on the comparisons with test data obtained by using domestic artificial lightweight aggregates and the contents specified in different foreign specifications including ACI 211.2, ACI 213, ACI 301, JASS 5 and CEB-FIP. To achieve the continuous particle distribution of domestic fine lightweight aggregates, the partial addition of natural sand with the maximum size of 2.5mm was required. To control the segregation and excessive bleeding in the fresh lightweight concrete, the current limitations on the water-to-binder ratio and unit water content need to be modified using lower values. In particular, a rational mixture proportion approach of lightweight concrete needs to be established for the targeted requirements of initial slump, 28-day compressive strength, air content and dry unit weight. Ultimately, significant revision of the concrete standard specifications is required considering the characteristics of domestic artificial lightweight aggregates.

Analysis of Crack Pattern of Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트의 균열발생 특징분석)

  • Lee, Bong-Hak;Choi, Pan-GiI
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.103-110
    • /
    • 2007
  • Concrete is a material that will crack during its service life by its very nature. For bridge decks this is especially significant as these cracks allow accelerated ingress of chlorides and the subsequent corrosion of the reinforcing steel and deck deterioration. Very-early strength latex-modified concrete (below ; VES-LMC) was developed in order to realize early-opening-to-traffic bridge deck concrete. Although there has been little research to document the degree of cracking in VES-LMC overlay, there has been a general perception among highway agencies that overlay cracking of VES-LMC, particularly early-age cracking, is a one of problems which should be solved. The purpose of this study was to analyze the cause of map, transverse and longitudinal cracking in VES-LMC and to provide a control methods for minimizing the occurrence of cracks. The proposed prevention against map and transverse cracking was verified by field applications. VES cement was modified, the unit cement contents was reduced into $360kg/m^3$ from $390kg/m^3$, the maximum size of coarse aggregate was increase into 19mm from 13mm, wire mesh and steel fibers were incorporated in concrete mixture.

  • PDF

A Study on Similitude Law for Pseudodynamic Tests and Shaking Table Tests on Small-scale R/C Models (철근콘크리트 축소모형의 유사동적실험과 진동대 실험을 위한 상사법칙 연구)

  • Yang, Hui-Gwan;Seo, Ju-Won;Cho, Nam-So;Chang, Sung-Pil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.545-552
    • /
    • 2006
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not also enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry similitude is not well consistent in their inelastic seismic behaviors. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable to use different materials for small-scale model. In our recent study, a modified similitude law was derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. And quasi-static and pseudo-dynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. In this study, tests on scaled model of different concrete compressive strength aye carried out. In shaking table tests, added mass can not be varied. Thus, constant added mass on expected maximum displacement was applied and the validity was verified in shaking table tests. And shaking table tests on non-artificial mass model is carried out to settle a limitation of acceleration and the validity was verified in shanking table tests.

  • PDF

Microstructure Related to the Growth of Rare-earth Mineral in the Eoraesan Area, Chungju, Korea (충주 어래산 지역에서 희토류 광물의 성장과 관련된 미구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.129-141
    • /
    • 2019
  • The Eoraesan area, Chungju, which is located in the northwestern part of Ogcheon Metamorphic Zone, Korea, mainly consists of the Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks which intruded it. The metaacidic rocks (MAR) of the Gyemyeongsan Formation show a maximum radioactive value, and the Early Jurassic biotite granite is regionally distributed in this area. In this paper is researched the microstructure related to the growth of rare-earth mineral of allanite in the MAR, and is considered the source and occurrence time of rare-earth element (REE) mineralization. The MAR is mainly composed of alkalic feldspar (mainly microcline), quartz, iron-oxidizing mineral, biotite, muscovite, plagioclase, hornblende, allanite, zircon, epidote, fluorite, apatite, garnet, (clino)zoisite etc. The radioactive elements contained in the allanite cause a dark brown hale in the surrounding biotite, and the allinte also occurs as aggregate along the regional foliation. The deflection of regional foliation and the strain shadows, which are common to the pre-tectonic porphyroblast grown before the formation of regional foliation, can't be observed around most allanites (aggregates). The grain size and orientation of ironoxidizing mineral included in the allanite aggregate are the same as those in the matrix. It is recognized the hydrothermal conversion of hornblende to biotite due to the intrusion of igneous rock, and the secondary biotite occurs and contacts with allanite, zircon, epidote etc. These microstructures indicate that the rare-earth mineral of allanite (aggregate) grew by the hydrothermal alteration due to the intrusion of igneous rock after the formation of regional foliation. It is considered that the REE mineralization is closely related to the intrusion of Early Jurassic biotite granite which is regionally distributed in this area.

Characterization of Asphalt Pavement Distress Using Korean Pavement Research Program (한국형포장설계법을 이용한 아스팔트포장의 파손특성)

  • Lee, Kwan-Ho;Lee, Kyung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2017
  • The main purpose of this study is to evaluate the main parameters involved in the asphalt pavement distresses, including IRI (International Rough Index), fatigue, and permanent deformation. The main parameters are the region (Seoul and Busan), traffic level, asphalt binder, maximum aggregate of surface course, thickness of the surface course and base. A total of 64 case studies were carried out under the auspices of the KPRP (Korea Pavement Research Program). From the analysis of the KPRP test results, the key factors for the asphalt pavement distress were determined. Considering the effect of one variable in the basic condition, asphalt binder was the major factor having an effect on the distresses for an AADT (Annual Average Daily Traffic) of 5000 in the Seoul area. Among the remaining factors, the results were found to be in the order of the base layer thickness (A), surface layer thickness (B), and aggregate particle size thickness (D). The same results were obtained for an AADT of 10000. In the case of Busan with an AADT of 5000, the same result was obtained as for Seoul. Among the remaining factors, the results were in the order of the base layer thickness (A), aggregate particle thickness (D), and surface layer thickness (B). Even though there was a slight difference in the effect of the traffic level and region, asphalt binder was the parameter having the greatest effect on the asphalt pavement distress. In the case where the effect of multiple parameters was analyzed, the combination of the asphalt binder and base thickness showed a relatively strong effect.

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate (일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.178-184
    • /
    • 2017
  • This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

Development of Fatigue Model for Asphalt Black Base by Accelerated Pavement Testing (포장가속시험을 이용한 아스팔트 안정처리층의 피로모형 개발)

  • Yeo, In-Soo;Suh, Young-Chan;Mun, Sung-Ho
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.11-20
    • /
    • 2007
  • This thesis develops a fatigue model for the asphalt black base using the APT(Accelerated Pavement Testing) and analyzes the correlation of the APT analysis result with results of previous laboratory tests. For the APT testing, aggregate of the maximum grain size of 25mm(BB-3) was used as the material for the asphalt black base. The result of the APT revealed that the variable of the fatigue model, i.e. the maximum tensile stress on the bottom part of the pavement, increased as the number of loading increased while the modulus of elasticity for the pavement layer decreased gradually. The tensile strain was obtained from a strain gauge, and it was used to derive the values of $k_1=1.29{\times}10^{-6}$ and $k_2=3.02$ from the basic equation of the asphalt fatigue model, $N_f=k_1(\frac{1}{\epsilon})^{k_2}$. The fatigue life predicted from the asphalt fatigue model was greater than that obtained from laboratory experiments, given the same tensile strain. Additionally, a theory to estimate the remaining life of the pavement was developed using FWD, a non-destructive experiment.

  • PDF