• Title/Summary/Keyword: Maximum Marginal Relevance

Search Result 2, Processing Time 0.014 seconds

Investigating an Automatic Method in Summarizing a Video Speech Using User-Assigned Tags (이용자 태그를 활용한 비디오 스피치 요약의 자동 생성 연구)

  • Kim, Hyun-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.46 no.1
    • /
    • pp.163-181
    • /
    • 2012
  • We investigated how useful video tags were in summarizing video speech and how valuable positional information was for speech summarization. Furthermore, we examined the similarity among sentences selected for a speech summary to reduce its redundancy. Based on such analysis results, we then designed and evaluated a method for automatically summarizing speech transcripts using a modified Maximum Marginal Relevance model. This model did not only reduce redundancy but it also enabled the use of social tags, title words, and sentence positional information. Finally, we compared the proposed method to the Extractor system in which key sentences of a video speech were chosen using the frequency and location information of speech content words. Results showed that the precision and recall rates of the proposed method were higher than those of the Extractor system, although there was no significant difference in the recall rates.

Improved Cold Item Recommendation Accuracy by Applying an Recommendation Diversification Method (추천 다양화 방법을 적용한 콜드 아이템 추천 정확도 향상)

  • Han, Jungkyu;Chun, Sejin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1242-1250
    • /
    • 2022
  • When recommending cold items that do not have user-item interactions to users, even we adopt state-of-the-arts algorithms, the predicted information of cold items tends to have lower accuracy compared to warm items which have enough user-item interactions. The lack of information makes for recommender systems to recommend monotonic items which have a few top popular contents matched to user preferences. As a result, under-diversified items have a negative impact on not only recommendation diversity but also on recommendation accuracy when recommending cold items. To address the problem, we adopt a diversification algorithm which tries to make distributions of accumulated contents embedding of the two items groups, recommended items and the items in the target user's already interacted items, similar. Evaluation on a real world data set CiteULike shows that the proposed method improves not only the diversity but also the accuracy of cold item recommendation.