• Title/Summary/Keyword: Maximum Likelihood Method

Search Result 999, Processing Time 0.022 seconds

Enhanced Inter-Symbol Interference Cancellation Scheme for Diffusion Based Molecular Communication using Maximum Likelihood Estimation

  • Raut, Prachi;Sarwade, Nisha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5035-5048
    • /
    • 2016
  • Nano scale networks are futuristic networks deemed as enablers for the Internet of Nano Things, Body area nano networks, target tracking, anomaly/ abnormality detection at molecular level and neuronal therapy / drug delivery applications. Molecular communication is considered the most compatible communication technology for nano devices. However, connectivity in such networks is very low due to inter-symbol interference (ISI). Few research papers have addressed the issue of ISI mitigation in molecular communication. However, many of these methods are not adaptive to dynamic environmental conditions. This paper presents an enhancement over original Memory-1 ISI cancellation scheme using maximum likelihood estimation of a channel parameter (λ) to make it adaptable to variable channel conditions. Results of the Monte Carlo simulation show that, the connectivity (Pconn) improves by 28% for given simulation parameters and environmental conditions by using enhanced Memory-1 cancellation method. Moreover, this ISI mitigation method allows reduction in symbol time (Ts) up to 50 seconds i.e. an improvement of 75% is achieved.

Latent Variable Fit to Interlaboratory Studies

  • Jeon, Gyeongbae
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.885-897
    • /
    • 2000
  • The use of an unweighted mean and of separate tests is part of the current practice for analyzing interlaboratory studies, and we hope to improve on this method. We fit, using maximum likelihood(ML), a rather intricate, multi-parameter measurement model with the material's true value as a latent variable in a situation where quite serviceable regression and ANOVA calculations have already been developed. The model fit leads to both a weighted estimate of he overall mean, and to tests for equality of means, slopes and variances. Maximum likelihood tests for difference among variances poses a challenge in that the likelihood can easily becoem unbounded. Thus the major objective become to provide a useful test of variance equality.

  • PDF

Bayesian and maximum likelihood estimation of entropy of the inverse Weibull distribution under generalized type I progressive hybrid censoring

  • Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.469-486
    • /
    • 2020
  • Entropy is an important term in statistical mechanics that was originally defined in the second law of thermodynamics. In this paper, we consider the maximum likelihood estimation (MLE), maximum product spacings estimation (MPSE) and Bayesian estimation of the entropy of an inverse Weibull distribution (InW) under a generalized type I progressive hybrid censoring scheme (GePH). The MLE and MPSE of the entropy cannot be obtained in closed form; therefore, we propose using the Newton-Raphson algorithm to solve it. Further, the Bayesian estimators for the entropy of InW based on squared error loss function (SqL), precautionary loss function (PrL), general entropy loss function (GeL) and linex loss function (LiL) are derived. In addition, we derive the Lindley's approximate method (LiA) of the Bayesian estimates. Monte Carlo simulations are conducted to compare the results among MLE, MPSE, and Bayesian estimators. A real data set based on the GePH is also analyzed for illustrative purposes.

Super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm for alpha imaging detector

  • Kim, Guna;Lim, Ilhan;Song, Kanghyon;Kim, Jong-Guk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2204-2212
    • /
    • 2022
  • Recently, the demand for alpha imaging detectors for quantifying the distributions of alpha particles has increased in various fields. This study aims to reconstruct a high-resolution image from an alpha imaging detector by applying a super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm. To perform the super-spatial resolution method, several images are acquired while slightly moving the detector to predefined positions. Then, a forward model for imaging is established by the system matrix containing the mechanical shifts, subsampling, and measured point-spread function of the imaging system. Using the measured images and system matrix, the MLEM algorithm is implemented, which converges towards a high-resolution image. We evaluated the performance of the proposed method through the Monte Carlo simulations and phantom experiments. The results showed that the super-spatial resolution method was successfully applied to the alpha imaging detector. The spatial resolution of the resultant image was improved by approximately 12% using four images. Overall, the study's outcomes demonstrate the feasibility of the super-spatial resolution method for the alpha imaging detector. Possible applications of the proposed method include high-resolution imaging for alpha particles of in vitro sliced tissue and pre-clinical biologic assessments for targeted alpha therapy.

Hybrid Method using Frame Selection and Weighting Model Rank to improve Performance of Real-time Text-Independent Speaker Recognition System based on GMM (GMM 기반 실시간 문맥독립화자식별시스템의 성능향상을 위한 프레임선택 및 가중치를 이용한 Hybrid 방법)

  • 김민정;석수영;김광수;정호열;정현열
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.512-522
    • /
    • 2002
  • In this paper, we propose a hybrid method which is mixed with frame selection and weighting model rank method, based on GMM(gaussian mixture model), for real-time text-independent speaker recognition system. In the system, maximum likelihood estimation was used for GMM parameter optimization, and maximum likelihood was used for recognition basically Proposed hybrid method has two steps. First, likelihood score was calculated with speaker models and test data at frame level, and the difference is calculated between the biggest likelihood value and second. And then, the frame is selected if the difference is bigger than threshold. The second, instead of calculated likelihood, weighting value is used for calculating total score at each selected frame. Cepstrum coefficient and regressive coefficient were used as feature parameters, and the database for test and training consists of several data which are collected at different time, and data for experience are selected randomly In experiments, we applied each method to baseline system, and tested. In speaker recognition experiments, proposed hybrid method has an average of 4% higher recognition accuracy than frame selection method and 1% higher than W method, implying the effectiveness of it.

  • PDF

비행시험을 통한 가로/방향 정적 미계수 추정에 관한 연구

  • Kim, Eung-Tai;Seong, Kie-Jeong;Kim, Yeong-Cheol;Kang, Sang-Jin
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.22-28
    • /
    • 2003
  • This paper presents a method for estimating static aerodynamic derivatives by analyzing data obtained from the flying quality evaluation test of a small canard aircraft. The aerodynamic derivatives extracted from maximum likelihood estimation method and from the proposed method in this paper are compared in the same polt. Reliable static aerodynamic derivatives were extracted from a limited number of the flight tests by the proposed method. The parameter data obtained from this method can be used as reference for the conventional parameter identification methods such as maximum likelihood estimation method.

  • PDF

VELOCITY ANALYSIS OF M13 BY MAXIMUM LIKELIHOOD METHOD

  • Oh, K.S.;Lin, D. N. C.
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 1992
  • We present new approach to analysis of velocity data of globular clusters. Maximum likelihood method is applied to get model parameters such as central potential, anisotropy radius, and total mass fractions in each mass class. This method can avoid problems in conventional binning method of chi-square. We utilize three velocity components, one from line of sight radial velocity and two from proper motion data. In our simplified scheme we adopt 3 mass-component model with unseen high mass stars, intermediate visible stars, and low mass dark remnants. Likelihood values are obtained for 124 stars in M13 for various model parameters. Our preferred model shows central potential of $W_o=7$ and anisotropy radius with 7 core radius. And it suggests non-negligible amount of unseen high mass stars and considerable amount of dark remnants in M13.

  • PDF

Improved Classification Algorithm using Extended Fuzzy Clustering and Maximum Likelihood Method

  • Jeon Young-Joon;Kim Jin-Il
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.447-450
    • /
    • 2004
  • This paper proposes remotely sensed image classification method by fuzzy c-means clustering algorithm using average intra-cluster distance. The average intra-cluster distance acquires an average of the vector set belong to each cluster and proportionates to its size and density. We perform classification according to pixel's membership grade by cluster center of fuzzy c-means clustering using the mean-values of training data about each class. Fuzzy c-means algorithm considered membership degree for inter-cluster of each class. And then, we validate degree of overlap between clusters. A pixel which has a high degree of overlap applies to the maximum likelihood classification method. Finally, we decide category by comparing with fuzzy membership degree and likelihood rate. The proposed method is applied to IKONOS remote sensing satellite image for the verifying test.

  • PDF

Gaussian Processes for Source Separation: Pseudo-likelihood Maximization (유사-가능도 최대화를 통한 가우시안 프로세스 기반 음원분리)

  • Park, Sun-Ho;Choi, Seung-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.7
    • /
    • pp.417-423
    • /
    • 2008
  • In this paper we present a probabilistic method for source separation in the case here each source has a certain temporal structure. We tackle the problem of source separation by maximum pseudo-likelihood estimation, representing the latent function which characterizes the temporal structure of each source by a random process with a Gaussian prior. The resulting pseudo-likelihood of the data is Gaussian, determined by a mixing matrix as well as by the predictive mean and covariance matrix that can easily be computed by Gaussian process (GP) regression. Gradient-based optimization is applied to estimate the demixing matrix through maximizing the log-pseudo-likelihood of the data. umerical experiments confirm the useful behavior of our method, compared to existing source separation methods.

A Study on One Factorial Longitudinal Data Analysis with Informative Drop-out

  • Lee, Ki-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1053-1065
    • /
    • 2006
  • This paper proposes a method in one-way layouts for longitudinal data with informative drop-out. When dropouts are informative, that is, correlated with unobserved data and/or the previous observed data, the simple imputation methods such as 'last observation carried forward' (LOCF) methods would arise the bias of the testing models. The maximum likelihood procedure combined with a logit model for the drop-out process is proposed to test treatment effects for one factorial designs and compared with LOCF method in two examples.

  • PDF