• Title/Summary/Keyword: Maximum Intensity Projection (MIP)

Search Result 36, Processing Time 0.028 seconds

Clinical Feasibility of Dual-Layer CT With Virtual Monochromatic Image for Preoperative Staging in Patients With Breast Cancer: A Comparison With Breast MRI

  • Bokdong Yeo;Kyung Min Shin;Byunggeon Park;Hye Jung Kim;Won Hwa Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.9
    • /
    • pp.798-806
    • /
    • 2024
  • Objective: Dual-layer CT (DLCT) can create virtual monochromatic images (VMIs) at various monochromatic X-ray energies, particularly at low keV levels, with high contrast-to-noise ratio. The purpose of this study was to assess the clinical feasibility of contrast-enhanced chest DLCT with a low keV VMI for preoperative breast cancer staging, in comparison to breast MRI. Materials and Methods: A total of 152 patients with 155 index breast cancers were enrolled in the study. VMIs were generated from contrast-enhanced chest DLCT at 40 keV and maximum intensity projection (MIP) with three-dimensional (3D) reconstruction was performed for both bilateral breast areas. Two radiologists reviewed in consensus the 3D MIP images of the chest DLCT with VMI and breast MRI in separate sessions with a 3-month wash-out period. The detection rate and mean tumor size of the index cancer were compared between the chest DLCT with VMI and breast MRI. Additionally, the agreement of tumor size measurement between the two imaging modalities were evaluated. Results: Of all index cancers, 84.5% (131/155) were detected in the chest DLCT with VMI, while 88.4% (137/155) were detected in the breast MRI (P = 0.210). The Bland-Altman agreement between the chest DLCT with VMI and breast MRI was a mean difference of -0.05 cm with 95% limits of agreement of -1.29 to 1.19 cm. The tumor size in the chest DLCT with VMI (2.3 ± 1.7 cm) was not significantly different from that in the breast MRI (2.4 ± 1.6 cm) (P = 0.106). Conclusion: The feasibility of chest DLCT with VMI was demonstrated for preoperative tumor staging in breast cancer patients, showing comparable cancer detectability and good agreement in tumor size measurement compared to breast MRI. This suggests that chest DLCT with VMI can serve as a potential alternative for patients who have contraindications to breast MRI.

Impact of Respiratory Motion on Breast Cancer Intensity-modulated Radiation Therapy (유방암 세기조절방사선치료에서의 호흡운동 영향)

  • Chung, Weon Kuu;Chung, Mijoo;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.93-97
    • /
    • 2016
  • In this study, we evaluate the effect of respiration on the dose distribution in patient target volume (PTV) during intensity-modulated radiation therapy (IMRT) and research methods to reduce this impact. The dose distributions, homogeneity index (HI), coverage index (CVI), and conformity index of the PTV, which is calculated from the dose-volume histogram (DVH), are compared between the maximum intensity projection (MIP) image-based plan and other images at respiration phases of 30%, 60% and 90%. In addition, the reducing effect of complication caused by patient respiration is estimated in the case of a bolus and the expended PTV on the skin. The HI is increased by approximately twice, and the CVI is relatively decreased without the bolus at other respiration phases. With the bolus and expended PTV, the change in the dose distribution of the PTV is relatively small with patient respiration. Therefore, the usage of the bolus and expended PTV can be considered as one of the methods to improve the accuracy of IMRT in the treatment of breast cancer patients with respiratory motion.

A Study on the Frequency of Occurrence of the Aortic Dissection using CT (CT 검사에서 대동맥박리(aortic dissection)의 발생빈도에 관한 고찰)

  • Dong, Kyung-Rae;Choi, Sung-Kwan;Jang, Young-Ill;Ro, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.115-121
    • /
    • 2008
  • Purpose: Aortic Dissection is very dangerous, prognostic disease, which the bloodstream flow out of the true lumen of the aorta by the bursting of aortic intima resulting in a rapid dissociation of inner and outer layer from the media. It is difficult to diagnose aortic dissection clinically by normal X-ray. This study was to investigate the occurrence frequency by age and number of patients who are identified to be aortic dissection by CT (Computed Tomography) scan. Materials and methods: We investigated the trend of yearly fluctuation, gender, age, and department of clinical research of the 112 patients who conducted CT scan in C- University Hospital for two years from January 2005 to December 2006. The MIP and SSD which reconstructed CT image and the VRT image were obtained for the accurate observation. The result was investigated by comparing normal X-ray and CT scan. Results and Conclusion: 1. The yearly check of 112 patients conducted CT scan showed 37 people (41.9%) in 2005, and it was increased to 65 (58.1%) in 2006 by 1.4 times. 2. The gender distribution of patients given a CT scan showed 45 males (40.1%), and female 67 (59.9 %). The aortic dissection patients were 9 (20%) out of 45 males, 21 (31.3%) out of 67 females and women were 1.6 times more than men. Women are also 1.5 times more than men in the number of examinee. 3. The age distribution of patient's who conducted CT scan revealed that there was no patient under 30 years old while 88.3% of all patients were through 41 to 80 years old. The higher the age was, the higher the occurrence of aortic dissection was. The difference in the occurrence frequency of age was statistically significant (p<0.01). 4. The departments that requested CT scan were the emergency department 46 (41.1%), circulatory internal medicine 37 (33.0%), chest surgery 13 (11.6%), and others 6 (14.3%). The combined ratio of emergency medicine and circulatory internal medicine was 74.1% of all. The results show that the aortic dissection is a very dangerous disease whose patients visit mainly via the emergency room. 5. The aortic dissection patients had normal X-ray readings in 22 (73.3%) out of 30, and only 8 (26.7 percent) are abnormal in the X-ray diagnosis. Therefore, the CT scan needs to be enforced in order to assess accurately the disease of aortic dissection.

  • PDF

Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose $^{131}I$ Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma (반복적인 $^{131}I$ rituximab 방사면역치료를 시행 받은 비호지킨 림프종 환자 군에서 종양 부위의 영상기반 방사선 흡수선량 평가와 임상적 의의)

  • Byun, Byung-Hyun;Kim, Kyeong-Min;Woo, Sang-Keun;Choi, Tae-Hyun;Kang, Hye-Jin;Oh, Dong-Hyun;Kim, Byeong-Il;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.60-71
    • /
    • 2009
  • Purpose: We assessed the absorbed dose to the tumor ($Dose_{tumor}$) by using pretreatment FDG-PET and whole-body (WB) planar images in repeated radioimmunotherapy (RIT) with $^{131}I$ rituximab for NHL. Materials and Methods: Patients with NHL (n=4) were administered a therapeutic dose of $^{131}I$ rituximab. Serial WB planar images alter RIT were acquired and overlaid to the coronal maximum intensity projection (MIP) PET image before RIT. On registered MIP PET and WB planar images, 2D-ROls were drawn on the region of tumor (n=7) and left medial thigh as background, and $Dose_{tumor}$ was calculated. The correlation between $Dose_{tumor}$ and the CT-based tumor volume change alter RIT was analyzed. The differences of $Dose_{tumor}$ and the tumor volume change according to the number of RIT were also assessed. Results: The values of absorbed dose were $397.7{\pm}646.2cGy$ ($53.0{\sim}2853.0cGy$). The values of CT-based tumor volume were $11.3{\pm}9.1\;cc$ ($2.9{\sim}34.2cc$), and the % changes of tumor volume before and alter RIT were $-29.8{\pm}44.3%$ ($-100.0%{\sim}+42.5%$), respectively. $Dose_{tumor}$ and the tumor volume change did not show the linear relationship (p>0.05). $Dose_{tumor}$ and the tumor volume change did not correlate with the number of repeated administration (p>0.05). Conclusion: We could determine the position and contour of viable tumor by MIP PET image. And, registration of PET and gamma camera images was possible to estimate the quantitative values of absorbed dose to tumor.

Evaluation of Cerebral Aneurysm with High Resolution MR Angiography using Slice Interpolation Technique: Correlation wity Digital Subtraction Angiography(DSA) and MR Angiography(MRA) (Slice Interpolation기법의 고해상도 자기공명혈관조영술을 이용한 뇌동맥류의 진단 : 디지탈 감산 혈관조영술과 자기공명 혈관조영술의 비교)

  • ;;;Daisy Chien;Gerhard Laub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.94-102
    • /
    • 1997
  • Purpose: There have been some efforts to diagnose intracranial aneurysm through a non-invasive method using MRA, although the process may be difficult when the lesion is less than 3mm. The present study prospectively compares the results of high resolution, fast speed slice interpolation MRA and DSA thereby examing the potentiality of primary non-invasive screening test. Materials and Methods: A total of 26 cerebral aneurysm lesions from 14 patients with subarachnoid hemorrhage from ruptured aneurysm (RA) and 5 patients with unruptured aneurysm(UA). In all subjects, MRA was taken to confirm the vessel of origin, definition of aneurysm neck and the relationship of the aneurysm to nearby small vessels, and the results were compared with the results of DSA. The images were obtained with 1.5T superconductive machine (Vision, Siemens, Erlangen, Germany) on 4 slabs of MRA using slice interpolation. The settings include TR/TE/FA=30/6.4/25, matrix $160{\times}512$, FOV $150{\times}200$, 7minutes 42 seconds of scan time, effective thickness of 0.7 mm and an entire thickness of 102. 2mm. The images included structures from foramen magnum to A3 portion of anterior cerebral artery. MIP was used for the image analysis, and multiplanar reconstruction (MPR) technique was used in cases of intracranial aneurysm. Results: A total of 26 intracranial aneurysm lesions from 19 patients with 2 patients having 3 lesion, 3 patients having 2 lesions and the rest of 14 patients having 1 lesion each were examined. Among those, 14 were RA and 12 were UA. Eight lesions were less than 2mm in size, 9 lesions were 3-5mm, 7 were 6-9mm and 2 were larger than IOmm. On initial exams, 25 out of 26 aneurysm lesions were detected in either MRA or DSA showing 96% sensitivity. Specificity cannot be estimated since there was no true negative of false positive findings. When MRA and MPR were used concurrently for the confirmation of size and shape, the results were equivalent to those of DSA, while in the confirmation of aneurysm neck and parent vessels, the concurrent use of MRA and MPR was far superior to the sole use of either MRA or DSA. Conclusion: High resolution MRA using slice interpolation technique showed equal results as those of DSA for the detection of intracranial aneurysm, and may be used as a primary non-invasive screening test in the future.

  • PDF

Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery (유속신호증강효과의 자기공명혈관조영술을 이용한 뇌혈관검사에서 Half Scan Factor 적용한 영상 평가)

  • Choi, Young Jae;Kweon, Dae Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.92-98
    • /
    • 2016
  • To aim of this study was to assess the full scan and half scan of imaging with half scan factor. Patients without a cerebral vascular disease (n = 30) and were subject to the full scan half scan, and set a region of interest in the cerebral artery from the three regions (C1, C2, C3) in the range of 7 to 8 mm. MIP (maximum intensity projection) to reconstruct the images in signal strength SNR (signal to noise ration), PSNR (peak signal noise to ratio), RMSE (root mean square error), MAE (mean absolute error) and calculated by paired t-test for use by statistics were analyzed. Scan time was half scan (4 minutes 53 seconds), the full scan (6 minutes 04 seconds). The mean measurement range (7.21 mm) of all the ROI in the brain blood vessel, was the SNR of the first C1 is completely scanned (58.66 dB), half-scan (62.10 dB), a positive correlation ($r^2=0.503$), for the second C2 SNR is completely scanned (70.30 dB), half-scan (74.67 dB) the amount of correlation ($r^2=0.575$), third C3 of a complete scan SNR (70.33 dB), half scan SNR (74.64 dB) in the amount of correlation between the It was analyzed with ($r^2=0.523$). Comparative full scan with half of SNR ($4.75{\pm}0.26dB$), PSNR ($21.87{\pm}0.28dB$), RMSE ($48.88{\pm}1.61$), was calculated as MAE ($25.56{\pm}2.2$). SNR is also applied to examine the half-scans are not many differences in the quality of the two scan methods were not statistically significant in the scan (p-value > .05) image takes less time than a full scan was used.