• Title/Summary/Keyword: Maximum Hardness Test

Search Result 156, Processing Time 0.027 seconds

Laser Weldability and Formability of Hot Rolled Steels for Hydroforming Applications (하이드로포밍용 열연 강재의 레이저 용접성 및 성형 특성)

  • Lee Won-Beam;Lee Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.19-24
    • /
    • 2004
  • The laser welding and its analysis of thin-sheet carbon steels were carried out with high power $CO_{2}$ laser. The main factor of weld quality of laser welding is gap and edge quality. This work was preformed to focus on the gap tolerance problem during laser welding. First, bead on plate welding of thin sheet was examined to investigate the effect of laser welding variables, and to obtain optimum welding condition. Butt welding was also carried out to show the effect of gap on the laser weldability of thin sheet. In order to investigate the effect of gap on formability of welded thin sheet, LDH test was caried out. At high welding speed, the partial penetration was obtained by low heat input. Otherwise, porosity was formed in the bead at low weld speed because of too much heat input. The optimum welding condition of welding was derived from bead width, penetration and hardness property. The maximum gap tolerance on laser welding was observed to be about 0.2mm. This gap size has good relationship with beam size of laser spot(about 0.3mm). The formability of welded sheet was about $80{\%}$ value of base metal and the gap size has not affected on the formability, although weld quality is dependent on the gap size.

Cavitation-Erosion Characteristics between Polymer Based Composites and Metals under the Various Condition of Fluid Systems (유체 환경하에서의 고분자 기지 복합재료와 금속재의 캐비테이션 침식 특성)

  • Kim, Yun-Hae;Son, Young-Jun;Eum, Soo-Hyun;Lee, Jung-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.363-371
    • /
    • 2003
  • This study is mainly concerned with phenomenon of cavitation-erosion on the several materials and corrosive liquids which were applied with vibrator(suggested by ASTM G 32, 20KHz, 50$mu extrm{m}$). The maximum erosion rate by cavitation erosion in both of distilled water and sea water appeared to be proportioned to their hardness and tensile strength. Cavitation weight loss and rate of cast iron in sea water condition were greater(approximately 3 times) than that in distilled water condition, however in case of stainless steel and brass the cavitation weight loss of composite materials were not so different in both of their conditions. Cavitation weight loss of composite materials were shown as below on this test, Duratough DL : Weight loss in sea-water condition were greater (approximately 2.3 times) than it's distilled water condition. The main tendency of cavitation erosion for metals appeared that small damaged holes causing by cavitation erosion was observed with radial pattern. On the other hand, the tendency for composites appeared that small damaged holes were observed randomly.

Minimizing of Cavitation-Erosion Damage for Various Structures using Composites under the various Condition of Fluid Flow Systems (복합재료를 이용한 유동유체 환경하의 각종 구조물의 캐비테이션 침식손상의 최소화 방안)

  • 이정주;김찬공;김용직;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.227-233
    • /
    • 1999
  • This study is mainly concerned with phenomenon of cavitation-erosion on the several materials and corrosive liquids which were applied with vibrator (suggested by ASTM G-32, 20KHZ, 24{$mu}m$).The main results obtained are summarized as follows ; (1) The maximum erosion rate by cavitation erosion in both of fresh-water and sea-water appeared to be proportioned to their hardness and tensile strength. (2) Cavitation weight loss and rate of cast iron in sea-water condition were greater (approximately 3 times) than that in distilled-water condition, however in case of stainless and brass the cavitation weight loss and their rates were not so different in both of their conditions. (3) Cavitation weight loss of composite materials were shown as below on this test, DuraTough DL : Weight loss in sea-water condition were greater (approximately 2.3 times) than it's fresh-water condition. (4) As the result of observation with digital camea of specimens, the main tendency of cavitation erosion for metals, was that small damaged holes causing by cavitation e개sion was appeared with radial pattern, and composites materials was that small damaged holes were appeared randomly.

  • PDF

Characteristics of Dissimillar Three-Sheet Resistance Spot Welding for Advanced High Strength Steel with Cover Plate (커버 플레이트를 이용한 이종 3겹 저항 점 용접성 평가)

  • Shim, Junghyun;Rhee, Sehun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.373-379
    • /
    • 2016
  • Low carbon steel is usually used as the outer panel with low base metal resistance compared to the inner reinforced panel made with high strength steel, which makes it difficult to form a robust nugget. To overcome welding problems of a dissimilar three-sheet combination made of SGACEN, DP980 and CP1180, a cover plate was inserted between the upper electrode and SGACEN. The quality of the nugget was analyzed by comparing the welding signals and cross sectional images under maximum heat input both with and without the cover plate. To analyze the mechanical of weld properties, a hardness test analysis was conducted. To enhance the reliability of experimental results, temperature distributions were obtained using a simulation program. The method of inserting a cover plate led to a change in the heat input, which induced a larger nugget size between SGACEN and DP980.

A Study on the Manufacturing of an Aluminum Shift-Fork by Casting/Forging Process (주조/단조 기술을 이용한 알루미늄 쉬프트 포크 제조에 관한 연구)

  • 배원병;이승재;유민수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.193-197
    • /
    • 2002
  • In this study, the casting/forging process was applied to the Shift-Fork, a manual transmission part of automobiles. In the casting experiments, the effects of additives, Sr, Ti+B and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. When 0.03% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform and the highest tensile strength and elongation accomplished. And when 0.2% Ti+B were added into the molten Al-Si alloy, the highest values of tensile strength were obtained. The maximum hardness was in case of 0.2% Mg. In the forging experiment, it was confirmed that the optimal configuration of the cast preform could be predicted by FE analysis. To minimize the cost as the press size, the compact shape of preform was proposed to reduce the volume of flash. The modification of shape in designing preform was performed to attain a satisfactory performance in the areas where the mechanical strength were more required. By using FVM(Finite Volume Method) software, it was verified that a proposed casting design was available. To identify the relationship between effective strain and mechanical properties of the final forged product, the compression test was performed. As the result, the tensile strength and elongation of a cast preform were much higher than before forging. The minimum forging temperature was found 40$0^{\circ}C$ to save heating time.

  • PDF

Variations of Micro-Structures and Mechanical Properties of Ti/STS321L Joint Using Brazing Method (브레이징을 이용한 Ti/STS321L 접합체의 미세조직과 기계적 특성의 변화)

  • 구자명;정우주;한범석;권상철;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.106-106
    • /
    • 2002
  • This study investigated variations of micro-structures and mechanical properties of Ti / STS321L joint with various bonding temperature and time using brazing method. According to increasing bonding temperature and time, it was observed that the thickness of their reaction layer increased due So increasing diffusion rate and time. From the EPMA results, Ti diffused to the STS321L substrate according to increasing bending time to 30min. Hardness of bonded interface increased with increasing bonding temperature and time due to increasing their oxides and intermetallic compounds. XRD data indicated that Ag, Ag-Ti intermetallic compounds, TiAg and Ti₃Ag and titanium oxide, TiO₂were formed in interface. In tensile test, it was found that the tensile strength had a maximum value at the bonding temperature of 900℃ and time of 5min, and tensile strength decreased over bonding time of 5min. The critical thickness of intermetallic compounds was observed to about 30㎛, because of brittleness from their excessive intermetallic compounds and titanium oxide, and weakness from void.

Effect of Aging Treatment on the Microstructures and Mechanical Properties of 7N01 Aluminium Alloy (7N01 Al 합금의 미세조직 및 기계적 성질에 미치는 시효처리의 영향)

  • Hwang, Youn-Gu;Kang, Min-Chul;Kang, Jung-Youn;Kim, In-Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.103-107
    • /
    • 2000
  • Effect of aging treatment on the microstructures and mechanical properties of 7N01 Al alloy was investigated by differential scanning calorimetry, transmission electron microscopy, microhardness measurement and tensile test. Maximum hardness(125.7Hv) and tensile strength(447.3MPa) were obtained from the specimen aged at $120^{\circ}C$ for 32hrs. The major precipitation hardening phase was confirmed as coherent $MgZn_2({\eta}^{\prime})$ phase. Microhardness changes after peakaged condition showed very large decrease upon increased aging time. This result was attributed to the high transformation rate from coherent ${\eta}^{\prime}$ to incoherent ${\eta}$. It was found that the precipitation sequence of 7N01 Al alloy was GP zone${\rightarrow}$metastable spherical hcp $MgZn_2({\eta}^{\prime}){\rightarrow}$ equilibrium rodlike hcp $MgZn_2({\eta})$.

  • PDF

Effect of aging treatment on the microstructures and mechanical properties of 6N01 Aluminium alloy (6N01 Al 합금의 미세조직 및 기계적 성질에 미치는 시효처리의 영향)

  • Kang, Min-Cheol;Koo, Hung-Suh;Yun, In-Taeg;Kang, Chung-Yun;Kim, In-Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.268-273
    • /
    • 1998
  • Effect of aging treatment on the microstructures and mechanical properties of 6N01 Aluminium alloy was investigated by differential scanning calorimetry, transmission electron microscopy, microhardness measurement and tensile test. It was found that the precipitation sequence of 6N01 Aluminium alloy was GP zone ${\rightarrow}$ metastable hexagonal $Mg_2S_i({\beta}^{\prime})$,${\rightarrow}$ equilibrium fcc $Mg_2S_i({\beta})$, and the precipitates at peak aged condition were GP zones and ${\beta}^{\prime}$ phase. Microhardness changes during over aged condition showed very small decrease upon increased aging time. This result was attributed to the very slow transformation rate of ${\beta}^{\prime}$ to ${\beta}$. Maximum hardness(116 Hv) and tensile strength(312.6MPa) with 22.3% elongation were obtained from the specimen aged at $180^{\circ}C$ for 15hrs.

  • PDF

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

Variations of Micro-Structures and Mechanical Properties of Ti/STS321L Joint Using Brazing Method (브레이징을 이용한 Ti/STS321L 접합체의 미세조직과 기계적 특성의 변화)

  • 구자명;정우주;한범석;권상철;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.830-837
    • /
    • 2002
  • This study investigated variations of micro-structures and mechanical properties of Ti / STS321L joint with various bonding temperature and time using brazing method. According to increasing bonding temperature and time, it was observed that the thickness of their reaction layer increased due So increasing diffusion rate and time. From the EPMA results, Ti diffused to the STS321L substrate according to increasing bending time to 30min. Hardness of bonded interface increased with increasing bonding temperature and time due to increasing their oxides and intermetallic compounds. XRD data indicated that Ag, Ag-Ti intermetallic compounds, TiAg and $Ti_3Ag$ and titanium oxide, $TiO_2$ were formed in interface. In tensile test, it was found that the tensile strength had a maximum value at the bonding temperature of $900^{\circ}C$ and time of 5min, and tensile strength decreased over bonding time of 5min. The critical thickness of intermetallic compounds was observed to about $30\mu\textrm{m}$, because of brittleness from their excessive intermetallic compounds and titanium oxide, and weakness from void.