• Title/Summary/Keyword: Maximum Force

Search Result 2,318, Processing Time 0.032 seconds

Study on Dynamic Characteristics of 4-Step Drainage Tower Based on Multi-body Dynamics Simulation (다물체 동역학 시뮬레이션 기반 4단 배수 타워의 동적 특성 연구)

  • Seungwoon Park;Yeong Hwan Han;Ho Young Jeon;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.9-16
    • /
    • 2023
  • This paper analyzed a drainage tower used to drain water in flooded areas. Multi-body dynamics simulation was used to analyze the dynamic behavior of the drainage tower. Structural analysis, flexible-body dynamic analysis, and rigid body dynamic analysis were done to study the maximum Von-Mises stress of the drainage tower. The results showed that the maximum Von-Mises stress occurs at the turn table, and it decreases when the angle of the boom is increased. Also, the rate of the change of angle affects the maximum stress so that the maximum stress changes more when the angular velocity of the boom increases. Based on the rigid body dynamic analysis and the theoretical analysis results, the centrifugal force from the angular velocity makes the difference in the maximum stress at the turn table because of the difference in their direction. Consequently, it was concluded that the centrifugal force should be considered when designing construction machinerythat can rotate.

Maximum Braking Force Control Using Wheel Slip Controller and Optimal Target Slip Assignment Algorithm in Vehicles (휠 슬립 제어기 및 최적 슬립 결정 알고리즘을 이용한 차량의 최대 제동력 제어)

  • Hong Dae-Gun;Hwang In-Yong;SunWoo Myoung-Ho;Huh Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.295-301
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. In order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm. An adaptive law is formulated to estimate the longitudinal braking force in real-time. The wheel slip controller is designed using the Lyapunov stability theory and considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm is developed for the maximum braking force and searches the optimal target slip value based on the estimated braking force. The performance of the proposed wheel-slip control system is verified In simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

A Permanent-Magnet Linear Motor Shape Optimal Design Using Coupling Particles Swarm Optimization

  • Baatar, Nyambayar;Pham, Minh-Trien;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.788_789
    • /
    • 2009
  • The cogging force of a permanent-magnet linear motor is a major component of the detent force, but unfortunately makes a ripple in the thrust force and induces undesired vibration and acoustic noise. In this paper, Coupling Particles Swarm Optimization is applied to optimization the shape of permanent magnet linear motor by minimizing the undesired vibration and acoustic noise in the thrust force and also considering the maximum thrust force. The result shows that the 9-pole 10-slot PMLM removes almost of the cogging force while giving a big thrust force.

  • PDF

Shape Optimization of DC Solenoid Valve to Minimize the Time of Action Using Response Surface Method (반응표면법을 이용한 최소동작시간을 갖는 DC 솔레노이드 밸브의 형상 최적 설계)

  • Yoon, He-Sung;Hwang, In-Sung;Kim, Dong-Soo;Yun, So-Nam;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.449-458
    • /
    • 2006
  • In general, a DC solenoid valve is evaluated by the performances such as the attraction force at maximum and minimum strokes, temperature rising, power consumption and time of action. The importance of each performance may be different according to the specific application purpose. When the temperature rising and power consumption are fixed, however, the performance of DC solenoid valve is usually evaluated by the attraction force at maximum and minimum strokes and time of action. In this paper, the shape of the pole face of plunger and core is optimized to increase the attraction force at maximum stroke, and thereby to minimize the time of action. For the shape optimization, (1+1) evolution strategy is incorporated with the response surface method(RSM) and finite element method(FEM).

Fabrication of electromagnetically actuated Al mirror with staple joint structure (스테이플 조인트를 이용한 전자력 구동 Al 미러의 제작)

  • Lim, Tae-Sun;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1884-1886
    • /
    • 2001
  • In this study, we fabricated Al mirror driven by electromagnetic force. Because the mirror has Ni staple joint, it reduces the deflection angle of torsion spring for the maximum deflection of mirror. Therefore the magnetic field for maximum deflection can be reduced, By additional electrostatic force, the deflection angle of mirror plate can be increased to $90^{\circ}$. The fabricated mirror is actuated by electromagnetic force of a simple solenoid. The maximum deflection angle by magnetic field is about $86^{\circ}$ with $1.2{\times}10^4$ A/m.

  • PDF

A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles (충격위치와 심재적층각도에 따른 하니컴 샌드위치 패널의 저속충격 특성 연구)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Dae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • In this paper, a study on low-velocity impact response of honeycomb sandwich panels was done for the changes of impact location and core fabrication angles. The test specimens were made of glass/epoxy laminate facesheet and aluminum honeycomb core. Square samples of 100mm and 100mm sides were subjected under low-velocity impact loading using instrumented testing machine at three energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for the changes of impact location and core fabrication angle. The impact damage size were measured at facesheet surface by 3-Dimensional scanner. Also, sandwich specimens after impact test were cut to analyse the failure mode.

A Study on Low-Velocity Impact Characterization of Sandwich Panels with Metal and Laminate Composite Facesheets (금속재와 적층복합재 면재를 갖는 샌드위치 패널의 저속충격 특성 연구)

  • Lee, Jae-Youl;Lee, Sang-Jin;Jo, Se-Hyun;Mok, Jai-Kyun;Shin, Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.144-150
    • /
    • 2007
  • In this paper, the low velocity response of four different sandwich panels with metal and laminate composite facesheets has been investigated by conducting drop-weight impact tests using an instrumented falling-weight impact tower. Square samples of 100mm sides were subjected low-velocity impact loading using an instrumented testing machine at six energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for four different types of sandwich panels. The impact test results show that sandwich panel with composite laminate facesheet could not observe damage mode of a permanent visible indentation after impact and has a good impact damage resistance in comparison with sandwich panel with metal aluminum facesheet.

  • PDF

Reflectivity of Sn Solder for LED Lead Frame

  • Xu, Zengfeng;Gi, Se-Ho;Park, Sang-Yun;Kim, Won-Jung;Jeong, Jae-Pil
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.184-185
    • /
    • 2011
  • In this study, in order to obtain a high reflectivity for the LED lead frame, tin dip coating and tin plating were conducted respectively, and wettability of LED lead frame with tin solder also was tested by wetting balance tester. A Cu sheet was plated in Cu brighten electroplating bath and followed by immersion in a Sn electro-less plating bath [1]. On the other hand, in the dip coating process, a Cu sheet was dipped into molten tin. In the progress of wetting test, besides wetting balance curve, the maximum measured force($F_m$), the maximum withdrawal force($F_w$) and zero-cross time($t_0$) were obtained in various temperatures. With the maximum withdrawal force, the surface tension was calculated at different temperatures. The Cu sheet plated with bright Cu and Sn show a silver bright property while that of Cu dipped with Sn possessed a high reflectance density of 1.34GAM at $270^{\circ}C$.

  • PDF

Study on Structural Safety of Automotive Inner and Outer Bumper (차체 안쪽과 바깥쪽 범퍼의 구조 안전성에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.130-134
    • /
    • 2011
  • This study aims at the structural safety with optimum design of automotive bumper in order to minimize the maximum stress and displacement and reduce the minimum quantity of bumper material. As the forces of X and Y direction increase, equivalent stress and displacement increase. The displacement of X direction force increases more than 20% in comparison with Y direction force. But the equivalent stress of Y direction force increases more than 60% in comparison with X direction force. The mass of inner bumper becomes minimum and the mass of outer bumper becomes maximum when the force of 4000N is applied on the direction inclined at $45^{\circ}$ toward outer bumper. In 50% range of increase and decrease at X and Y direction force, the optimum forces of X and Y component becomes 2368.8N and 1538.8N respectively. And the masses of inner and outer polypropylene bumper become $3.3227{\times}10^{-2}kg$and $3.5538{\times}10^{-2}kg$respectively.

Mechanical Analysis of golf driving stroke motion (골프드라이빙 스트로크시 역학적 분석)

  • Park, Kwang-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.205-219
    • /
    • 2002
  • This research seeks to identify the plantar pressure distribution graph and change in force in connection with effective golf drive strokes and thus to help ordinary golfers have appropriate understanding on the moving of the center of weight and learn desirable drive swing movements. To this end, we conducted surveys on five excellent golfers to analyze the plantar pressure applied when performing golf drive strokes, and suggested dynamic variables quantitatively. 1) Our research presents the desire movements as follows. For the time change in connection with the whole movement, as a golfer raises the club head horizontally low above ground from the address to the top swing, he makes a semicircle using the left elbow joint and shaft and slowly turns his body, thus lengthening the time. And, as the golfer twists the right waist from the middle swing to the impact with the head taking address movement, and does a quick movement, thus shortening the time. 2) For the change in pressure distribution by phase, to strike a strong shot with his weight imposed from the middle swing to the impact, a golfer uses centrifugal force, fixes his left foot, and makes impact. This showed greater pressure distribution on the left sole than on the right sole. 3) For the force distribution graph by phase, the force in the sole from the address to halfway swing movements is distributed to the left foot with 46% and to the right foot with 54%. And, with the starting of down swing, as the weight shifts to the left foot, the force is distributed to the left sole with 58%. Thus, during the impact and follow through movements, it is desirable for a golfer to allow his left foot to take the weight with the right foot balancing the body. 4) The maximum pressure distribution and average of the maximum force in connection with the whole movement changed as the left (foot) and right (foot) supported opposing force, and the maximum pressure distribution also showed much greater on the left sole.