• Title/Summary/Keyword: Maximum Force

Search Result 2,318, Processing Time 0.027 seconds

Effect of Fatigue on Force-Matching in the Quadriceps Muscle

  • Song, Young-Hee;Lee, Su-Young;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.10-15
    • /
    • 2006
  • This study examined the ability of human subjects to match a force in their quadriceps muscle during fatigue. Twenty subjects (mean age: 23.4 yrs, mean height: 167.8 cm, mean weight, 62.6 kg) were enrolled in the experiment. In the force-matching task, the quadriceps muscle generated 50% of the MVIC (maximum voluntary isometric contraction) torque under visual control and then without visual feedback. After inducing fatigue in the quadriceps muscle, the subjects were required to match 50% of the MVIC torque without visual feedback. The perceived magnitude of the force and force-matching errors were measured. 50% of the MVIC torque was perceived from 39.96 Nm in the pre-fatigue condition to 44.95 Nm in the post-fatigue condition. 50% of the MVIC torque-matching errors increased significantly from .55% in the pre-fatigue condition to 9.6% in the post-fatigue condition (p<.001). in addition, there were significantly more force-matching errors in women than in men (p<.01). In conclusion muscle fatigue can interfere with a subject's ability to match a force. This suggests that muscle fatigue may contributes to the sensitization of the proprioception.

  • PDF

A Study on the Design of Rifling Angle by Setting up an Idealized Rifling Force Curve (이상적인 강선력 곡선에 의한 강선각 설계기법)

  • Cha, Kiup;Ahn, Sangtae;Cho, Changki;Choi, Euijung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Rifling Force can be described with projectile velocity, gas pressure and rifling angle, etc. Under the same conditions, the character of the rifling angle decisively influences the rifling force. To reduce the harmful effect, locally distinct maximum of rifling force has to be avoided. The optimal design methodology of rifling angle curve had been developed by combined Fourier series and polynomial function. When it was tried newly to design the rifling angle curve, this design trial caused not to produce the lower rifling force than the existing design. Normally, the curve of the rifling angle is designed first, then the rifling force is set according to the rifling angle curve. However during the cause analysis, new design methodology was established to design the ideal rifling force curve before the rifling angle design. With this new methodology, the above optimal design method was analyzed and its limitation was confirmed.

An Improved Friction Model and Its Implications for the Slip, the Frictional Energy, and the Cornering Force and Moment of Tires

  • Park, K.S.;Oh, C.W.;Kim, T.W.;Jeong, Hyun-Yong;Kim, Y.H.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1399-1409
    • /
    • 2006
  • An improved friction model was proposed with consideration of the effect of the sliding speed, the contact pressure and the temperature, and it was implemented into a user subroutine of a commercial FEM code, ABAQUS/Explicit. Then, a smooth tire was simulated for free rolling, driving, braking and cornering situations using the improved friction model and the Coulomb friction model, and the effect of the friction models on the slip, the frictional energy distribution and the cornering force and moment was analyzed. For the free rolling, the driving and the braking situations, the improved friction model and the Coulomb friction model resulted in similar profiles of the slip and the frictional energy distributions although the magnitudes were different. The slips obtained from the simulations were in a good correlation with experimental data. For the cornering situation, the Coulomb friction model with the coefficient of friction of 1 or 2 resulted in lower or higher cornering forces and moments than experimental data. In addition, in contrast to experimental data it did not result in a maximum cornering force and a decrease of the cornering moment for the increase of the speed. However, the improved friction model resulted in similar cornering forces and moments to experimental data, and it resulted in a maximum cornering force and a decrease of the cornering moment for the increase of the speed, showing a good correlation with experimental data.

Biomechanical Analysis for the Development of Windlass Mechanism for Trail-walking Shoe (윈들라스 메커니즘을 적용한 트레일 워킹화 개발을 위한 생체역학적 분석)

  • Park, Jong-Jin;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.489-498
    • /
    • 2015
  • Objective : The purpose of this study was to analyze the effects of the windlass mechanism in trail-walking shoe prototypes that can effectively support arches. A study of these effects should help with the development of a first-rate trail-walking shoe development guide for the distribution of quality information to consumers. Methods : The subjects were ten adult males who volunteered to participate in the study. Shoes from three companies, which will be referred to as Company S (Type A), Company M (Type B), and Company P (Type C), were selected for the experiment. The subjects wore these shoes and walked at a speed of 4.2 km/h, and as they tested each shoe, the contact area, maximum pressure average, and surface force were all measured. Results : Shoe Type A showed a contact area of $148.78{\pm}4.31cm^2$, Type B showed an area of $145.74{\pm}4.1cm^2$, and Type C showed an area of $143.37{\pm}4.57cm^2$ (p<.01). Shoe Type A demonstrated a maximum average pressure of $80.80{\pm}9.92kPa$, Type B an average of $85.72{\pm}11.01kPa$, and Type C an average of $89.12{\pm}10.88bkPa$ (p<.05). Shoe Type A showed a ground reaction force of $1.13{\pm}0.06%BW$, Type B a force of $1.16{\pm}0.04%BW$, and Type C a force of $1.16{\pm}0.03%BW$ (p<.05). Conclusion : The Type A trail-walking shoe, which was designed with a wide arch from the center of the forefoot to the front of the rearfoot showed excellent performance, however, more development and analysis of the windlass mechanism for a variety of arch structures is still necessary.

Comparison of immediate complete denture, tooth and implant-supported overdenture on vertical dimension and muscle activity

  • Shah, Farhan Khalid;Gebreel, Ashraf;Elshokouki, Ali Hamed;Habib, Ahmed Ali;Porwal, Amit
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.61-71
    • /
    • 2012
  • PURPOSE. To compare the changes in the occlusal vertical dimension, activity of masseter muscles and biting force after insertion of immediate denture constructed with conventional, tooth-supported and Implant-supported immediate mandibular complete denture. MATERIALS AND METHODS. Patients were selected and treatment was carried out with all the three different concepts i.e, immediate denture constructed with conventional (Group A), tooth-supported (Group B) and Implant-supported (Group C) immediate mandibular complete dentures. Parameters of evaluation and comparison were occlusal vertical dimension measured by radiograph (at three different time intervals), Masseter muscle electromyographic (EMG) measurement by EMG analysis (at three different positions of jaws) and bite force measured by force transducer (at two different time intervals). The obtained data were statistically analyzed by using ANOVA-F test at 5% level of significance. If the F test was significant, Least Significant Difference test was performed to test further significant differences between variables. RESULTS. Comparison between mean differences in occlusal vertical dimension for tested groups showed that it was only statistically significant at 1 year after immediate dentures insertion. Comparison between mean differences in wavelet packet coefficients of the electromyographic signals of masseter muscles for tested groups was not significant at rest position, but significant at initial contact position and maximum voluntary clench position. Comparison between mean differences in maximum biting force for tested groups was not statistically significant at 5% level of significance. CONCLUSION. Immediate complete overdentures whether tooth or implant supported prosthesis is recommended than totally mucosal supported prosthesis.

A COMPARISON OF THE MASTICATORY FUNCTION BETWEEN TWO DIFFERENT TYPES OF IMPLANT SUPPORTED PROSTHESES AND COMPLETE DENTURE FOR FULLY EDENTULOUS PATIENTS

  • Lee, Jae-Hoon;Kim, Woo-Hyun;Shin, Rie-Hye;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.591-601
    • /
    • 2008
  • STATEMENT OF PROBLEM: The improvement in oral function and comfort from the dental implant appears to depend on the particular type of implant support used with the denture. The number and positioning of implants have an influence on the force transfer and subsequent stress distribution around implants. Nevertheless, a quantitative comparison has not been made between the types of implant prosthesis used with different materials compared to conventional complete denture. PURPOSE: The objective of this study is to assess the masticatory performance, bite force and impact of two different type of implant supported prostheses on oral health-related quality of life compared to conventional complete denture with GOHAI, validated oral-specific health status measures, the sieving method, and the Prescale Dental System. MATERIAL AND METHODS: From the years 1999 to 2006, a total of 30 completely edentulous patients in a single arch were selected from the Yonsei University Dental Hospital, Department of Prosthodontics and Implant Clinic in Seoul, S. Korea. Patients were divided into 3 groups of 10 each. Group HR was restored with fixed-detachable hybrid prostheses with resin teeth. Group FP had fixed dentures with porcelain teeth while Group CD had a complete denture. The masticatory performance was compared between 3 groups. RESULTS: The results showed a significant improvement in oral health-related quality of life with dental implants compared to a conventional denture in GOHAI comparison. Overall, implant prostheses showed a higher masticatory performance ($S_{50}$) and maximum bite force compared with conventional dentures (P < .05) but no differences between different implant supported prostheses (P > .05). CONCLUSION: Within the limitation of this study, the numbers of implant and material of implant prostheses does not appear to impact patient satisfaction, masticatory performance or bite force.

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • Jeong, Tae-Gon;Jeong, Yong-Hun;Lee, Su-Won;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Gang, Gwan-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF

Magnetic Properties of Cr/CoPtCr/$SiO_2$Thin Films for High Density Magnetic Recording Media (고밀도 자기기록매체용 Cr/CoPtCr/$SiO_2$ 다층박막의 자기적 성질)

  • Choi, H.;Hong, Y.G.;Kim, C.O.
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.560-564
    • /
    • 1998
  • CoPtCr magnetic layer was fabricated on the Cr underlayer by RF magnetron sputtering and the protective $SiO_2$ layer was deposited at room temperature. As the thickness of Cr underlayer increased, the coercive force of magnetic layer increased, then saturated slightly further increasing Cr underlayer thickness. Maximum coercive force was 860 Oe. It is thought that in-plane arrangement of magnetic phase and magnetic decoupling between the magnetic crystallites could lead to the increase of the coercive force. Post-annealing raised the coercive force exceedingly. and maximum coercive force value was 1650 Oe which was acquired from the sample annealed at 55$0^{\circ}C$ for 1hr.

  • PDF

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.