• Title/Summary/Keyword: Maximum Force

Search Result 2,318, Processing Time 0.024 seconds

Perforation threshold energy of carbon fiber composite laminates

  • Hwang, Shun-Fa;Li, Jia-Ching;Mao, Ching-Ping
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • Two carbon fiber composite laminates, $[0/90]_{2S}$ and $[0/+45/90/-45]_S$, were considered in this work to find out the perforation threshold energy to complete the perforation process and the corresponding maximum contact force. Explicit finite element commercial software, LS-DYNA, was used to predict these values. According to the simulation results, these two types of composite laminates were tested by using a vertical drop-weight testing machine. After testing, the damage condition of these specimens were observed and compared with the results from finite element analysis. The testing results indicate that the perforation threshold energy is 6 Joules for $[0/90]_{2S}$ and 7 Joules for $[0/+45/90/-45]_S$, which is in good agreement with the simulation results. Also, the maximum contact force at the case of perforation threshold energy is the lowest as compared to the maximum contact forces occurring at the impact energy that is larger or less than the perforation threshold energy.

The Changes of Hardness and Microstructure of Dongchimi according to Different Kinds of Sugar (당의 종류를 달리한 동치미의 경도 변화 및 세포벽 관찰)

  • Ahn, Gee-Jung
    • Culinary science and hospitality research
    • /
    • v.12 no.4 s.31
    • /
    • pp.299-319
    • /
    • 2006
  • The purpose of this study was to investigate the changes of hardness and microstructure of Dongchimi cooked with various sources of sugar(xylitol, xylose, sugar, pear juice). It was fermented at $10^{\circ}C$ for 60 days. The changes of pH in Dongchimi used different kinds of sugar decreased in all samples during the fermentation period, and then showed a slow decrease after 12 days of fermentation. The total acidity of Dongchimi using xylitol arrived slowly at the best tasting condition($0.3\sim0.4$ point) compared with other conditions. The changes of salt content were showed high as compared with other test conditions in 0 day, the day of fermentation. At the early stage of fermentation, the changes of turbidity of Dongchimi using sugar, pear juice were showed high as compared with those of Dongchimi using xylitol, xylose for $5\sim15$ days of fermentation. The maximum cutting force of Chinese radish Dongchimi showed the highest value among al at the 25 th day of ripening and then decreased gradually. The maximum cutting force of Dongchimi using sugar showed the lowest. The calcium and magnesium contents of Dongchimi juice and Chinese radish Dongchimi juice using xylitol were observed high at the early stage of fermentation and showed the highest value during the fermentation period. The microstructure showed disintegration appearance of middle lamella and cell wall during the fermentation period.

  • PDF

A Study on Low-Velocity Impact Characterization of Various Sandwich Panels for the Korean Low Floor Bus Application (초저상 버스 차체 적용을 위한 샌드위치 패널들의 저속충격 특성 연구)

  • Lee, Jae-Youl;Lee, Sang-Jin;Shin, Kwang-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.506-516
    • /
    • 2007
  • In this paper, a study on low-velocity impact response of four different sandwich panels for the hybrid bodyshell and floor structure application of the Korean low floor bus vehicle was done. Square samples of 100mm sides were subjected low-velocity impact loading using an instrumented testing machine at six energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for four different types of sandwich panels. The impact damage size and depth of the permanent indentation were measured by 3-Dimensional Scanner. Failure modes were studied by sectioning the specimens and observed under optical microscope. The impact test results show that sandwich panel with composite laminate facesheet could not observe damage mode of a permanent visible indentation after impact and has a good impact damage resistance in comparison with sandwich panel with metal aluminum facesheet.

Control Method of Mobile Robots for Avoiding Slip and Turnover on Sloped Terrain Using a Gyro/Vision Sensor Module (Gyro/Vision Sensor Module을 이용한 주행 로봇의 미끄러짐 및 넘어짐 회피 제어 기법)

  • Lee Jeong-Hee;Park Jae-Byung;Lee Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.669-677
    • /
    • 2005
  • This acticle describes the control method of mobile robots for avoiding slip and turnover on sloped terrain. An inexpensive gyro/vision sensor module is suggested for obtaining the information of terrain at present and future. Using the terrain information and the robot state, the maximum limit velocity of the forward velocity of the robot is defined fur avoiding slip and turnover of the robot. Simultaneously the maximum value of the robot velocity is reflected to an operator in the form of reflective force on a forte feedback joystick. Consequently the operator can recognize the maximum velocity of the robot determined by the terrain information and the robot state. In this point of view, the inconsistency of the robot movement and the user's command caused by the limit velocity of the robot can be compensated by the reflective force. The experimenal results show the effectiveness of the suggested method.

Design of flexure hinge to reduce lateral force of laser assisted thermo-compression bonding system (레이저 열-압착 본딩 시스템의 Lateral Force 감소를 위한 유연 힌지의 설계)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.23-30
    • /
    • 2020
  • Laser Assisted Thermo-Compression Bonding (LATCB) has been proposed to improve the "chip tilt due to the difference in solder bump height" that occurs during the conventional semiconductor chip bonding process. The bonding module of the LATCB system has used a piezoelectric actuator to control the inclination of the compression jig on a micro scale, and the piezoelectric actuator has been directly coupled to the compression jig to minimize the assembly tolerance of the compression jig. However, this structure generates a lateral force in the piezoelectric actuator when the compression jig is tilted, and the stacked piezoelectric element vulnerable to the lateral force has a risk of failure. In this paper, the optimal design of the flexure hinge was performed to minimize the lateral force generated in the piezoelectric actuator when the compression jig is tilted by using the displacement difference of the piezoelectric actuator in the bonding module for LATCB. The design variables of the flexure hinge were defined as the hinge height, the minimum diameter, and the notch radius. And the effect of the change of each variable on the stress generated in the flexible hinge and the lateral force acting on the piezoelectric actuator was analyzed. Also, optimization was carried out using commercial structural analysis software. As a result, when the displacement difference between the piezoelectric actuators is the maximum (90um), the maximum stress generated in the flexible hinge is 11.5% of the elastic limit of the hinge material, and the lateral force acting on the piezoelectric actuator is less than 1N.

The Accuracy of Subjective Rating of Grip Strength Associated with Target Force Levels (Target Force Level에 따른 악력의 주관적 평가 정확도)

  • Kong, Yong-Ku;Park, Donghyun;Choi, Kyeong-Hee;Shin, Jae-Min;Lee, Juhee;Lee, Jun-Hyub
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.569-578
    • /
    • 2017
  • Objective: The purposes of this experiment are an analysis of accuracy between target force level and subjective rating for the Target Force Level and an analysis of the patterns of subjective rating depending on target force level when there is no feedback from males for analysis. Background: The study of perceived exertion about the static contraction is processed with using among the matching procedure method between contralateral limbs, Exertion vs. Borg CR-10 scale and Exertion vs. %MVC (Maximum Voluntary Contraction). However, when there is no feedback, there is lack of the study on whether the subject can distinguish the subjective rating of the force depending on the target force levels. Method: Total 30 males, healthy subjects are measured the maximum grip strength, MVC, and then, each subject is measured the subjective rating and the accuracy with the random target force level (10, 20, 30, 40, 50, 60, 70, 80, and 90% MVC). Results: In the MVC study, males exerted 256.87N (${\pm}51.33$). In the subjective rating of grip strength increased for each Target Force Level (9 levels), higher subjective rating evaluated (p<0.05). In accuracy examination between target force level and subjective rating of grip strength by each %MVC, 10, 30, 40, 50, 70, 90% target force levels showed accurate strength (p>0.05). However, at 20% target force level, the subjects evaluated less subjective rating of grip strength than the target force (Underestimation), and at 60% and 80% target force level, the subjects evaluated more subjective rating of grip strength than the target force (Overestimation) (p<0.05). Conclusion: In the experiment, the MVC showed 256.87N (${\pm}51.33$) for the male adults and as the subjective rating value increased for each Target Force Level (9 levels), higher subjective rating evaluated (p<0.05). Moreover, the results of the accuracy test between target forces and subjective rating of the subjects showed that most participants rated a fairly accurate assessment of subjective rating of grip strength for Target Force Level (9 levels), except for 20%, 60%, and 80%MVC. Application: This experimental result would be used for basic data for the subjective rating of grip strength pattern by the target force level when the voluntary muscle is contracted.

Stress Analysis with respect to the change of the Shape of Screw Blade and the Hole for Centrifuge (원심분리기용 스크류의 블레이드 및 원공형상변화에 따른 음력해석)

  • 이성욱;심재준;한동섭;한근조;안찬우;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.749-752
    • /
    • 2002
  • In this study, we carried out the finite element analysis about screw that is the weakest part of the centrifuge for sewage management. Structural analysis was done with respect to the change of outer radius and thickness of screw blade and screw with sewage discharge hole. If the area of circular hole is equal to that of extended holes, maximum equivalent stress was compared between hole and extended hole. Centrifugal force on account of rotation of 4000 rpm was applied the screw. The results are as follows : 1 . When the larger radius and thickness of screw blade was used, the higher maximum equivalent stress is occurred. 2. When the larger radius of sewage discharge hale was used, the higher maximum equivalent stress is occurred. 3. When the longer parallel part length of extended hole was used, the higher maximum equivalent stress is occurred. 4. If the extended hole with the same discharging area which circular hole uses, the maximum equivalent stress is lower.

  • PDF

Characterization and Preparation of Glass-Ceramics in the System Fe_2O_3-CaO-SiO_2$ (I) (Fe_2O_3-CaO-SiO_2$계 결정화 유리의 제조 및 특성(I))

  • 이용근;최세영;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.629-636
    • /
    • 1994
  • The ferrimagnetic glass-ceramics in the system Fe2O3-CaO-SiO2 for hyperthermia were investigated. Glasses could be prepared up to the content of 40 wt% of Fe2O3 and below the weight ratio of 1.0 of CaO/SiO2. The maximum saturation magnetization and the maximum coercive force were 29.85 emu/g and 340.1 Oe respectively, for a glass 40Fe2O3.20CaO.40SiO2 composition heat-treated at 95$0^{\circ}C$ for 8 hours. And for a glass 40Fe2O3.30CaO.30SiO2 composition the maximum saturation magnetization and the maximum coercive force were 18.47 emu/g and 374.4 Oe heat-treated at 1,00$0^{\circ}C$ and 90$0^{\circ}C$ for 8 hours respectively. The maximum hysteresis loss was 1,726.3 cal/g for a glass 40Fe2O3.20CaO.40SiO2 composition heat-treated at 95$0^{\circ}C$ for 8 hours. It was found that the ferrimagnetic Fe2O3.CaO.SiO2 glass-ceramics was little injurious to human body as results of biocompatibility test and biotoxicity test.

  • PDF

Effect of Density Variation of High Tenacity PET Interlace Yarn on the Physical Properties of Pack Style Shock Energy Absorber (고강력 PET Interlace Yarn 밀도변화가 Pack Style Shock Energy Absorber의 물성에 미치는 영향)

  • Cho, Jin Won;Kwon, Sang Jun;Choe, Jong Deok;Kim, Sang Tae;Ji, Byung Chul;Yang, Seong Baek;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.27 no.2
    • /
    • pp.132-141
    • /
    • 2015
  • Fall-arrest systems(maximum arrest force and allowable free-fall) have been widely applied to provide a safe stop during fall incidents for various industrial activities. Fabric structure affects on the mechanical properties of shock energy absorber. The object of this study is to perform the basic research for the evaluation of the capacity of fall arrest energy absorber in relation to the different interlace yarn density. In this work, pack style energy absorber was prepared by weaving 10 types(Interlace yarn density used high tenacity PET 1000D : 60, 59, 58, 57, 56, 55, 54, 53, 52, 51). The paper presents the results of theoretical investigations of the performance of adjustable absorber during fall arrest. Dynamic load tests based on the EU fall protection equipment standard(CE : EN355:2002) were conducted. Results showed that the maximum arrest force by dynamic load test of energy absorber was satisfied with global standard(below 6,000N). Also, Maximum allowable free-fall of energy absorber showed below 1.75m.

J-integral for subsurface crack in circular plate with inner hole under rolling and sliding contact (구름 및 미끄럼 접촉하의 중공원판의 표면하층균열에 대한 J-적분)

  • Lee, Kang-Yong;Kim, June-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1149-1155
    • /
    • 1997
  • J-integral for a subsurface horizontal crack in a circular plate with an inner hole under rolling line contact is evaluated according to loading positions with various load conditions, crack length and crack location. Two-dimensional crack is modeled, and the relation between Tresca stress for uncracked model and J-integral is discussed. The loading location which gives the maximum J-integral depends on load condition and crack location, and the presence of friction force increases Tresca stress and J-integral near the surface. Regardless of friction force, crack location that gives maximum J-integral is the same as that of maximum Tresca stress in an uncracked model, and the value of J-integral is propotional to crack length. It is also showed that the variation of an inner radius of a disk does not effect J-integral value.