• Title/Summary/Keyword: Maximum Dose

Search Result 1,208, Processing Time 0.028 seconds

Measurements of Neutron Activation and Dose Rate Induced by High-Energy Medical Linear Accelerator

  • Kwon, Na Hye;Jang, Young Jae;Kim, Jinsung;Kim, Kum Bae;Yoo, Jaeryong;Ahn, So Hyun;Kim, Dong Wook;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: During the treatments of cancer patients with a linear accelerator (LINAC) using photon beams with energies ≥8 MV, the components inside the LINAC head get activated through the interaction of photonuclear reaction (γ, n) and neutron capture (n, γ). We used spectroscopy and measured the dose rate for the LINAC in operation after the treatment ended. Methods: We performed spectroscopy and dose rate measurements for three units of LINACs with a portable high-purity Germanium (HPGe) detector and a survey meter. The spectra were obtained after the beams were turned off. Spectroscopy was conducted for 3,600 seconds, and the dose rate was measured three times. We identified the radionuclides for each LINAC. Results: According to gamma spectroscopy results, most of the nuclides were short-lived radionuclides with half-lives of 100 days, except for 60Co, 65Zn, and 181W nuclides. The dose rate for three LINACs obtained immediately in front of the crosshair was in the range of 0.113 to 0.129 µSv/h. The maximum and minimum dose rates measured on weekends were 0.097 µSv/h and 0.092 µSv/h, respectively. Compared with the differences in weekday data, there was no significant difference between the data measured on Saturday and Sunday. Conclusions: Most of the detected radionuclides had half-lives <100 days, and the dose rate decreased rapidly. For equipment that primarily used energies ≤10 MV, when the equipment was transferred after at least 10 minutes after shutting it down, it is expected that there will be little effect on the workers' exposure.

Organ dose reconstruction for the radiation epidemiological study of Korean radiation workers: The first dose evaluation for the Korean Radiation Worker Study (KRWS)

  • Tae-Eun Kwon;Areum Jeong;Wi-Ho Ha;Dalnim Lee;Songwon Seo;Junik Cho;Euidam Kim;Yoonsun Chung;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.725-733
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences has started a radiation epidemiological study, titled "Korean Radiation Worker Study," to evaluate the health effects of occupational exposure to radiation. As a part of this study, we investigated the methodologies and results of reconstructing organ-specific absorbed doses based on personal dose equivalent, Hp(10), reported from 1984 to 2019 for 20,605 Korean radiation workers. For the organ dose reconstruction, representative exposure scenarios (i.e., radiation energy and exposure geometry) were first determined according to occupational groups, and dose coefficients for converting Hp(10) to organ absorbed doses were then appropriately taken based on the exposure scenarios. Individual annual doses and individual cumulative doses were reconstructed for 27 organs, and the highest values were observed in the thyroid doses (on average 0.77 mGy/y and 10.47 mGy, respectively). Mean values of individual cumulative absorbed doses for the red bone marrow, colon, and lungs were 7.83, 8.78, and 8.43 mSv, respectively. Most of the organ doses were maximum for industrial radiographers, followed by nuclear power plant workers, medical workers, and other facility workers. The organ dose database established in this study will be utilized for organ-specific risk estimation in the Korean Radiation Worker Study.

Solar Ultraviolet Irradiance Incident on a Horizontal Surface At taegu In Korea During 1995-1998 : (I) Ultraviolet -A

  • Suh, Kye-Hong
    • Journal of Photoscience
    • /
    • v.6 no.1
    • /
    • pp.1-3
    • /
    • 1999
  • Solar ultraviolet-A (UV-A) irradiances indicent on a horizontal surface at Taegu of Korea during 1995-1998 were calculated with 5 min averages of measurements taken every 30 seconds by a broadband UV- A sensor. The maximum and minimum of monthly averages of daily UV-A dose were 499.37 KJ m-2 day-1 inJuly and 171.09 KJ m--2 day-1 in December for 4 years of the observation period. The maxima of daily UV-A dose and instandaneous UV-A were observed as 846.46KJ m-2 day-1 June 7, 1998 and 37.22 W m-2 at 12 : 15, July 16, 1998, respectively. Increasing trends in annual maxima of daily UV-A dose and instantaneous UV-A were averaged to 6.4% and 6.7% , respectively, per year during 1995-1998 at Taegu, Korea.

  • PDF

Relationship between Stratospheric Ozone and Solar Ultraviolet B Irradiance in Taegu, Korea

  • Suh, Kye-Hong;Cho, Young-Joon
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.117-119
    • /
    • 2001
  • Solar ultraviolet-B (UV-B) irradiances incident on a horizontal surface at Taegu, Korea during 1996-1998 were calculated with 5 minute averages of measurements taken every 30 seconds by a broadband UV-B sensor. The average, maximum and minimum of daily UV-B dose were 11.31, 22.04 and 3.20kJ m$^{-2}$ day$^{-1}$ , respectively, for the measuring period. Variations in stratospheric ozone concentration measured from space explain 85% of changes in the daily UV-B dose. It was expected that decrease of 50 Du in stratospheric ozone cause increase of 24.1% in daily UV-B dose in this study.

  • PDF

Contamination of an Alcyon Co-60 Gamma rays by Electrons (Alcyon Co-60 감마선의 전자오염)

  • Yoo Meong-Jin;Kim Dong-Won;Kim Chul-Soo;Chung Woon-Hyuk
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.109-116
    • /
    • 1988
  • The Alcyon Co-60 gamma rays was studied for electron contamination. The surface dose, attributable almost entirely to contamination electrons, has a linear dependence on field width for square fields and an inverse square dependence on distance from the bottom of the fixed head assembly Build-up and surface dose measurements were taken with and without an acrylic blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the acrylic tray. The results are discussed in relation to skin sparing effect for radiation therapy Patients. And to achieve the maximum skin sparing effect, the selection of the optimum SSD and TSD is needed.

  • PDF

Reduction of Exposure Dose of Mammography by Comparison of Compression Paddle Material (압박대 재질 비교를 통한 유방촬영의 피폭선량 감소 방안)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.455-460
    • /
    • 2019
  • This study compared the radiation transmission and image quality of polymethylmethacrylate (PMMA), polycarbonate (PC), and carbon, which are common components of the compression plates currently used during breast imaging. In addition to measuring the transmitted dose and the intensity without the use of a compression paddle, the four different compression paddles were evaluated according to the material and thickness of each paddle. Radiation transmittance, maximum intensity, and plot profile type w ere all evaluated for each material, and for each factor evaluated the follow ing order w as noted, from best to w orst: carbon 4 mm, PMMA 3 mm, PMMA 4 mm, and PC 4 mm. It is necessary to study a variety of materials and thicknesses in order to find the optimal combination of material and thickness, because not only does the material have a large influence in reducing the radiation exposure during mammography, but the thickness of the compression plate also has a great influence.

Electrical Properties of Transformer Oils due to Electron Beam Irradiation (전자선 조사에 따른 변압기유의 전기적 특성)

  • 이용우;조돈찬;홍진웅
    • Electrical & Electronic Materials
    • /
    • v.10 no.8
    • /
    • pp.756-762
    • /
    • 1997
  • In this paper the change of electrical properties of transformer oil due to electron beam irradiation is investigated. The specimens are produced with a some different dose of 0.5[Mrad], 1[Mrad] and 2[Mard] except for original specimen. The physical properties of each specimen is analyzed by using the FT-IR spectrum. So it is confirmed that carbonyl groups are increased according to the increase of electron beam dose and also that the nitric compounds are disappeared. The magnitude of dielectric dissipation factor appears maximum value by the contribution of dipoles and ions in the low temperature low voltage region and it is stable due to the saturation of carriers in the high temperature high voltage region in the electric conduction characteristics. Volume resistivity is also measured one of original specimen is larger than irradiated specimen.

  • PDF

A Study on Radiation Dose in Mammography (유방촬영(乳房撮影)의 방사선량(放射線量)에 관(關)한 연구(硏究))

  • Choi, Jong-Hak;Jeon, Man-Jin;Kim, Young-Ill;Choi, Jong-Woon
    • Journal of radiological science and technology
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 1981
  • We studied radiation dose in mammography through 34-46 kv range using acryl phantom. The obtained results were as follows: 1. Incident radiation was maximum with high kvp and thin added filtration. 2. Transmitted radiation by acryl phantom and its thickness were in reciprocal relationship. 3. The acryl thickness to produce comparable film density with soft tissue of breast was 6 cm. 4. The X-ray exposure for comparable density radiographs increased mammographic film more than medical x-ray film and the amount of x-ray exposure was directly proportional to the added filtration of x-ray beam. 5. The surface dose of x-ray exposure needed to produce film density of 1.0 for 6cm acryl phantom was 1,084-1,575mR in mammographic film and 476-625 mR in medical x-ray film.

  • PDF

Implementation of Water Bolus in Patient with Large Tissue Defect (조직결손이 큰 환자에서 물 볼루스의 적용에 관한 고찰)

  • Park, Hyo-Kuk;Lee, Sang-Kyu;Yoon, Jong-Won;Cho, Jeong-Hee;Kim, Dong-Wook;Kim, Joo-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • Purpose: To demonstrate that water bolus in the patient surface can decrease the dose inhomogeneity by patient surface large tissue defect when the surface is in an electron-beam field. And We tried to find a easy way to water control. Methods and Materials: To demonstrate the use of water bolus in the irregular surface clinically, the case of a patient with myxofibrosarcoma of the chest wall who was treated with electrons. We obtained dose distribution using missing tissue option of PINACLE 6.2b (ADAC, USA). We fabricate a Mev-green for water bolus in patient with defect of tissue. Then put the water bolus which is vinyl packed water into the designed Mev-green. We peformed CT scan with CT-simulator. Three-dimensional (3D) dose distributions with and without water bolus in the large irregular chest wall were calculated for a representative patient. Resulting dose distributions and dose-volume histograms of water bolus were compared with missing tissue option and non bolus plans. We fabricate a new water control device. Results: Controlled Water bolus markedly decrease the dose heterogeneity, and minimizes normal tissue exposure caused by the surface irregularities of the chest wall mass. In the test case, The non bolus plan has a maximum target dose of 132%. After applying water bolus, the maximum target dose has been reduced substantially to 110.4%. The maximum target dose was reduced by 21.6% using this technique. Conclusion: The results showed that controlled water bolus could significantly improve the dose homogeneity in the PTV for patients treated with electron therapy using water control device. This technique may reduce the incidence of normal organ complications that occur after electron-beam therapy in irregular surface. And our new device shows handiness of water control.

  • PDF

The Dosimetric Data of 10 MV Linear Accelerator Photon Beam for Total Body Irradiation (전신 방사선조사를 위한 10MV 선형가속기의 선량측정)

  • Ahn Sung Ja;Kang Wee-Saing;Park Seung Jin;Nam Taek Keun;Chung Woong Ki;Nah Byung Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.225-232
    • /
    • 1994
  • Purpose : This study was to obtain the basic dosimetric data using the 10 MV X-ray for the total body irradiation. Materials and Methods : A linear accelerator photon beam is planned to be used as a radiation source for total body irradiation (TBI) in Chonnam University Hospital. The planned distance from the target to the midplane of a patient is 360cm and the maximum geometric field size is 144cm x 144cm. Polystyrene phantom sized $30{\times}30{\times}30.2cm^3$ and consisted of several sheets with various thickness, and a parallel plate ionization chamber were used to measure surface dose and percent depth dose (PDD) at 345cm SSD, and dose profiles. To evaluate whether a beam modifier is necessary for TBI, dosimetry in build up region was made first with no modifier and next with an 1cm thick acryl plate 20cm far from the polystyrene phantom surface. For a fixed sourec-chamber distance, output factors were measured for various depth. Results : As any beam modifier was not on the way of radiation of 10MV X-ray, the $d_{max}$ and surface dose was 1.8cm and $61\%$, respectively, for 345cm SSD. When an 1cm thick acryl plate was put 20cm far from polystyrene phantom for the SSD, the $d_{max}$ and surface dose were 0.8cm and $94\%$, respectively. With acryl as a beam spoiler, the PDD at 10cm depth was $78.4\%$ and exit dose was a little higher than expected dose at interface of exit surface. For two-opposing fields for a 30cm phantom thick phantom, the surface dose and maximum dose relative to mid-depth dose in our experiments were $102.5\%$ and $106.3\%$, respectively. The off-axis distance of that point of $95\%$ of beam axis dose were 70cm on principal axis and 80cm on diagonal axis. Conclusion: 1. To increase surface dose for TBI by 10MV X-ray at 360cm SAD, 1cm thick acrylic spoiler was sufficient when distance from phantom surface to spoiler was 20cm. 2. At 345cm SSD, 10MV X-ray beam of full field produced a satisfiable dose uniformity for TBI within $7\%$ in the phantom of 30cm thickness by two-opposing irradiation technique. 3. The uniform dose distribution region was 67cm on principal axis of the beam and 80cm on diagonal axis from beam axis. 4. The output factors at mid-point of various thickness revealed linear relation with depth, and it could be applicable to practical TBI.

  • PDF