• Title/Summary/Keyword: Maximum Demand

Search Result 744, Processing Time 0.039 seconds

Development of a smart rain gauge system for continuous and accurate observations of light and heavy rainfall

  • Han, Byungjoo;Oh, Yeontaek;Nguyen, Hoang Hai;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.334-334
    • /
    • 2022
  • Improvement of old-fashioned rain gauge systems for automatic, timely, continuous, and accurate precipitation observation is highly essential for weather/climate prediction and natural hazards early warning, since the occurrence frequency and intensity of heavy and extreme precipitation events (especially floods) are recently getting more increase and severe worldwide due to climate change. Although rain gauge accuracy of 0.1 mm is recommended by the World Meteorological Organization (WMO), the traditional rain gauges in both weighting and tipping bucket types are often unable to meet that demand due to several existing technical limitations together with higher production and maintenance costs. Therefore, we aim to introduce a newly developed and cost-effective hybrid rain gauge system at 0.1 mm accuracy that combines advantages of weighting and tipping bucket types for continuous, automatic, and accurate precipitation observation, where the errors from long-term load cells and external environmental sources (e.g., winds) can be removed via an automatic drainage system and artificial intelligence-based data quality control procedure. Our rain gauge system consists of an instrument unit for measuring precipitation, a communication unit for transmitting and receiving measured precipitation signals, and a database unit for storing, processing, and analyzing precipitation data. This newly developed rain gauge was designed according to the weather instrument criteria, where precipitation amounts filled into the tipping bucket are measured considering the receiver's diameter, the maximum measurement of precipitation, drainage time, and the conductivity marking. Moreover, it is also designed to transmit the measured precipitation data stored in the PCB through RS232, RS485, and TCP/IP, together with connecting to the data logger to enable data collection and analysis based on user needs. Preliminary results from a comparison with an existing 1.0-mm tipping bucket rain gauge indicated that our developed rain gauge has an excellent performance in continuous precipitation observation with higher measurement accuracy, more correct precipitation days observed (120 days), and a lower error of roughly 27 mm occurred during the measurement period.

  • PDF

Shortwave Infrared Photodetector based on PbS Quantum Dots for Eye-Safety Lidar Sensors (Eye safety 라이다 센서용 황화납 양자점 기반 SWIR photodetector 개발)

  • Suji Choi;JinBeom Kwon;Yuntae Ha;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.285-289
    • /
    • 2023
  • Recently, the demand for lidar systems for autonomous driving is increasing, and research on Shortwave Infrared(SWIR) photodetectors for this purpose is being actively conducted. Most SWIR photodetectors currently being developed are based on InGaAs, and have the disadvantages of complex processes, high prices, and limitations in research due to monopoly. In addition, current SWIR photodetectors use lasers in the 905 nm wavelength band, which can pass through the pupil and cause damage to the retina. Therefore, it is required to develop a SWIR photodetector using a wavelength band of 1400 nm or more to be safe for human eyes, and to develop a material that can replace the proprietary InGaAs. PbS QDs are group 4-6 compound semiconductors whose absorption wavelength band can be adjusted from 1000 to 2700 nm, and have the advantage of being simple to process. Therefore, in this study, PbS QDs having an absorption wavelength peak of 1415 nm were synthesized, and a SWIR photodetector was fabricated using this. In addition, the photodetector's responsivity was improved by applying P3HT and ZnO NPs to improve electron hole mobility. As a result of the experiment, it was confirmed that the synthesized PbS QDs had excellent FWHM characteristics compared to commercial PbS QDs, and it was confirmed that the photodetector had a maximum current change of about 1.6 times.

Environmental Control in the Plant Factory System Influences Year-Round Production of Allium hookeri Leaves (삼채(Allium hookeri) 잎 연중생산을 위한 식물공장 환경제어 효과)

  • Jeong-Wook Heo;Jeong-Hyun Baek;Sung-Hyen Lee;Min-Jeong Kim;Chang-Kee Shim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.279-285
    • /
    • 2023
  • The demand for the fresh leaf of hooker chive, which is mainly used as functional roots and contains dietary sulfur or saponin, is increasing, but the leaves are only harvested 3-4 times per year under conventional field conditions. A plant factory system with different light qualities or intensities was applied for year-round production of the fresh leaves. Hooker chive (Allium hookeri) roots were hydroponically cultured under the plant factory with a mixture of blue plus red LEDs (Light-Emitting Diodes) and fluorescent lights for 50 weeks. Maximum leaf growth was attained with the 1.5 dS/m EC in the culture medium under the plant factory. The average leaf and shoot numbers of hooker chive grown hydroponically under a mixture of 200 µmol/m2/s LEDs increased by 147% and 140%, respectively compared to those under 100 µmol/m2/s LEDs at the 10th harvest. The leaf length of hooker chive grown under the LEDs treatment with the lowest light intensity significantly increased by 27% compared with the natural light treatment at the 10th harvest. However, there was no significant difference in leaf pigmentation between natural and 200 µmol/m2/s LEDs treatments. Plant factory with the mixture LEDs of blue and red lights can be applied for year-round production of hooker chive fresh leaves to ensure a stable supply of leafy vegetable throughout the year.

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

Enhanced extraction of copper and nickel based on the Egyptian Abu Swayeil copper ore

  • Somia T. Mohamed;Abeer A. Emam;Wael M. Fathy;Amany R. Salem;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.63-78
    • /
    • 2024
  • The continuous increasing of the global demand of copper and nickel metals raises the interest in developing alternative technologies to produce them from copper sulfide ore. Also, in line with Egypt's vision 2030 for achieving the sustainable socioeconomic development which aims at developing alternative and eco-friendly technologies for processing the Egyptian ores to produce these strategic products instead of its importing. These metals enhance the advanced electrical and electronic industries. The current work aims at investigating the recovery of copper and nickel from Abu Swayeil copper ore using pug leaching technique by sulfuric acid. The factors affecting the pug leaching process including the sulfuric acid concentration, leaching time and temperature have been investigated. The copper ore sample was characterized chemically using X-ray fluorescence (XRF) and scanning electron microscope (SEM-EDX). A response surface methodology develops a quadratic model that expects the nickel and copper leaching effectiveness as a function of three controlling factors involved in the procedure of leaching was also investigated. The obtained results showed that the maximum dissolution efficiency of Ni and Cu are 99.06 % and 95.30%, respectively which was obtained at the following conditions: 15 % H2SO4 acid concentration for 6 hr. at 250 ℃. The dissolution kinetics of nickel and copper that were examined according to heterogeneous model, indicated that the dissolution rates were controlled by surface chemical process during the pug leaching. The activation energy of copper and nickel dissolution were 26.79 kJ.mol-1 and 38.078 kJ.mol-1 respectively; and the surface chemical was proposed as the leaching rate-controlling step.

Evaluation of Treatment Efficencies of Pollutants in Juksancheon Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 죽산천 인공습지의 오염물질 정화효율 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Seo, Young-Jin;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.642-648
    • /
    • 2012
  • To evaluate the water quality in Juksancheon constructed wetlands for treating non-point source pollution, the removal rates of nutrients in water and the total amounts of T-N and T-P uptakes by water plants were investigated. Chemical characteristics of T-N and T-P in sediment were investigated. The concentrations of BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), SS (Suspended Solids), T-N and T-P in inflow were 0.07~1.47, 0.60~2.65, 0.50~4.60, 1.38~6.26 and $0.08{\sim}0.32mg\;L^{-1}$, respectively. The removal rates of BOD, COD, SS, T-N, and T-P were -10, 51, 66, -3 and 5%, respectively. The maximum amount of T-N uptake by water plants in August was $368.7mg\;plant^{-1}$ in the $2^{nd}$ treatment stage by Nymphoides peltata, $1314.6mg\;plant^{-1}$ in the $3^{rd}$ treatment stage by Iris pseudacorus, $1160.4mg\;plant^{-1}$ in the $4^{th}$ treatment stage by Nymphaea tetragona GEORGI, respectively. The maximum amount of T-P uptake by water plants in August was $121.7mg\;plant^{-1}$ by Nymphoides peltata in the $2^{nd}$ treatment stage, $268.7mg\;plant^{-1}$ by Iris pseudacorus in the $3^{rd}$ treatment stage and $212.0mg\;plant^{-1}$ by Nymphaea tetragona GEORGI in the $4^{th}$ treatment stage, respectively. Organic matter contents in sediments were not different. Contents of T-N and T-P in sediments were higher in spring. Microbial biomass C:N:P ratios in sediments in spring, summer, autumn and winter were 117~140:1~4:1, 86~126:5~6:1, 68~101:2~6:1 and 47~138:2~4:1, respectively. We could conclude that Juksancheon constructed wetlands show high removal efficiencies of COD and SS. However, improvements of management in winter season should be considered to improve the removal efficiencies of pollutants.

Nitrogen Removal Via Sediment Denitrification and Its Seasonal Variations in Major Estuaries of South Coast of Korean Peninsula (남해안 주요 하구 갯벌 퇴적물의 탈질소화를 통한 질소 영양염 제거)

  • Heo, Nak-Won;Lee, Ji-Young;Choi, Jae-Ung;An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.81-96
    • /
    • 2011
  • Sediment oxygen demand(SOD) and denitrification rates were measured in four major estuaries(Suncheon Bay, Seomjin river estuary, Goseong stream estuary and Masan Bay) in south coast of Korean peninsula from March of 2009 to May 2010 to estimate organic matter cleaning capacity. SOD was estimated from the temporal dissolved oxygen concentration change and isotopic pairing technique was employed to measure denitrification. Sediment oxygen demand(SOD) was ranged from -5.1 to 24.6 mmole $O_2m^{-2}d^{-1}$ and denitrification rate was ranged from 0.0 to 3.9 mmole $N_2m^{-2}d^{-1}$in the study area. SOD was the highest in Masan Bay(-2.2 to 19.2, average = 10.2 mmole $O_2m^{-2}d^{-1}$) and Suncheon, Goseong, Tae-an and Seomjin followed. Denitrification was also the highest in Masn Bay(0.0 to 3.9, average = 1.0 mmole $N_2m^{-2}d^{-1}$) and Goseong, Seomjin, Suncheon and Taean followed. The effect of benthic photosynthesis by microphytobenthos on denitrification was evident in some season of Tae-an, Seomjin, and Masn Bay. The increased oxygen level produced by photosynthesis stimulated nitrification without severe adverse effect on denitrification and, as a result, coupled nitrification and denitrification was enhanced in these areas. A difference of seasonal patterns of denitrification at each site depended on relative importance of denitrification on different nitrate source($D_w$: nitrate from water column and $D_n$: nitrated produced during nitrification). Denitrification was maximum during spring in Goseong, Suncheon and Masan Bay. On the contrary, denitrification was the highest during summer in Tae-an and Seomjin estuary.

Study for Clean Energy Farming System by Mass and Energy Balance Analysis in the Controlled Cultivation of Vegetable Crop (Cucumber) (물질 및 에너지 수지 분석을 통한 시설채소(오이)의 청정에너지 농업 시스템 구축을 위한 기초 연구)

  • Shin, Kook-Sik;Kim, Seung-Hwan;Oh, Seong-Yong;Lee, Sang-En;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.280-286
    • /
    • 2012
  • Clean energy farming is the agricultural activity to improve an efficiency of agricultural energy use and to replace fossil fuels. This study was carried out to establish the clean energy farming system in the controlled cultivation of vegetable crop (cucumber) adopting the biogas production facility. In order to design the clean energy farming system, mass and energy balance was analyzed between the controlled cultivation system and the biogas production facility. Net yearly heating energy demands ($E_{YHED}$) of forcing and semi-forcing cultivation types were 48,697 and $13.536Mcal\;10^{-1}$ in the controlled cultivation of vegetable cucumber. To cover these $E_{YHED}$, the pig slurry of 511 and $142m^3\;10a^{-1}$ (biogas volume of 9,482 and $2,636Nm^3\;10a^{-1}$, respectively, as 60% methane content) were needed in forcing and semi-forcing cultivation types. The pig slurry of $511m^3\;10a^{-1}$ caused N 1,788, $P_2O_5$ $511kg\;10a^{-1}$ in the forcing cultivation type, and the pig slurry of $142m^3\;10a^{-1}$ caused N 497, $P_2O_5$ $142kg\;10a^{-1}$ in the semi-forcing cultivation type. The daily heating energy demand ($E_{i,DHED}$) by the time scale analysis showed the minimum $E_{i,DHED}$ of $7.7Mcal\;10a^{-1}\;day^{-1}$, the maximum $E_{i,DHED}$ of $515.1Mcal\;10a^{-1}\;day^{-1}$, and the mean $E_{i,DHED}$ of 310.2 in the forcing cultivation type. And the minimum $E_{i,DHED}$, the maximum $E_{i,DHED}$, and the mean $E_{i,DHED}$ were 5.3, 258.0, and $165.1Mcal\;10a^{-1}\;day^{-1}$ in the semi-forcing cultivation type, respectively. Input scale of biogas production facility designed from the mean $E_{i,DHED}$ were 3.3 and $1.7m^3\;day^{-1}$ in the forcing and the semi-forcing cultivation type. The maximum $E_{i,DHED}$ gave the input scale of 5.4 and $2.7m^3\;day^{-1}$ in the forcing and the semi-forcing cultivation type.

Community Structure of Benthic Macroinvertebrates and Water Quality in the Major Lakes (Lake Sayeon, Lake Daeam, Seonam Reservoir, Lake Hoeya) of Ulsansi (울산 지역 주요 호소(사연호, 대암호, 선암저수지, 회야호)의 수질 및 저서성대형무척추동물 군집구조 분석)

  • Lee, Mi-Jin;Kwon, Hyeok-Young;Lee, Hae-Jin;Seo, Jung-Kwan;Lee, Jae-Kwan;Lee, Jong-Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.396-406
    • /
    • 2011
  • To analyze between water quality and community structure of benthic macroinvertebrates, we selected four reservoirs (Lake Sayeon, Lake Daeam, Seonam reservoir and Lake Hoeya) in Ulsan-si and studied them from February 2010 to October 2010. The annual mean BOD (Biochemical Oxygen Demand) in the four lakes was $14.2mg\;L^{-1}$, and Seonam reservoir had the highest deviation in BOD. The maximum BOD for every lake was in February and their minimum in May, except for Lake Hoeya whose minimum was in July. The means of various nutrients were as follows: TN $0.051mg\;L^{-1}$, TP $0.100mg\;L^{-1}$, $NH_3-N\;0.606mg\;L^{-1}$, and $NO_3-N\;0.014mg\;L^{-1}$. The maximum TN was measured in June and the maximum and minimum TP were measured in March and in May respectively in the four lakes. Benthic macroinvertebrates were surveyed in April and October 2010. The number of benthic macroinvertebrates species was in the range of 16~36 and the average number of individuals were 58~208 inds. $m^{-2}$. Seonam reservoir, which has the highest mean TN ($0.082mg\;L^{-1}$) and $NO_3-N$($0.023mg\;L^{-1}$), had the largest number of species (36 species, 208 inds. $m^{-2}$). Pearson's correlation between the number of macro invertebrates species and TN was 0.962 (P<0.05), and between the species and $NO_3-N$ was 0.999 (P<0.05). These results show that the number of benthic macroinvertebrates species of the four lakes in Ulsan-si is significantly correlated with TN and $NO_3-N$.

Spatio-temporal Variation Analysis of Physico-chemical Water Quality in the Yeongsan-River Watershed (영산강 수계의 이화학적 수질에 관한 시공간적 변이 분석)

  • Kang, Sun-Ah;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.73-84
    • /
    • 2006
  • The objective of this study was to analyze long-term temporal trends of water chemistry and spatial heterogeneity for 10 sampling sites of the Yeongsan River watershed using water quality dataset during 1995 to 2004 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of biological oxygen demand (BOD), chemical oxygen demand (COD), conductivity, dissolved oxygen (Do), total phosphorus (TP), total nitrogen (TN) and total suspended solids (TSS), largely varied depending on the sampling sites, seasons and years. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summmer monsoon rain. Conductivity, used as a key indicator for a ionic dilution during rainy season, and nutrients of TN and TP had an inverse function of precipitation (absolute r values> 0.32, P< 0.01, n= 119), whereas BOD and COD had no significant relations(P> 0.05, n= 119) with rainfall. Minimum values in conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of total suspended solids (TSS) occurred during the period of summer monsoon. BOD values varied with seasons and the values was closely associated (r=0.592: P< 0.01) with COD, while variations of TN were had high correlations (r=0.529 : P< 0.01) with TP. Seasonal fluctuations of DO showed that maximum values were in the cold winter season and minimum values were in the summer seasons, indicating an inverse relation with water temperature. The spatial trend analyses of TP, TN, BOD, COD and TSS, except for conductivity, showed that the values were greater in the mid-river reach than in the headwater and down-river reaches. Conductivity was greater in the down-river sites than any other sites. Overall data of BOD, COD, and nutrients (TN, TP) showed that water quality was worst in the Site 4, compared to those of others sites. This was due to continuous effluents from the wastewater treatment plants within the urban area of Gwangju city. Based on the overall dataset, efficient water quality management is required in the urban area for better water quality.