• Title/Summary/Keyword: Maximum Boost

Search Result 216, Processing Time 0.021 seconds

Sensorless MPPT Control using a Boost Converter and a Grid Side Inverter in Wind Power Generation Systems (Boost 컨버터와 계통연계 인버터를 이용한 풍력발전의 센서리스 MPPT 제어)

  • Kim, Do-Yoon;Lee, Jun-Min;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1372-1377
    • /
    • 2011
  • This paper proposes the control method of MPPT(maximum power point tracking) for the wind energy generation system using the duty ratio control of boost type DC-DC converter. For a lower cost and a higher reliability, the wind and the generator velocity sensors are removed. MPPT control is implemented by changing the duty ratio of the boost converter. Chain rule is applied by using each function. The grid side inverter is controlled to regulate unity power factor. The proposed control method was analyzed mathematically and verified by the computer simulation using PSIM.

Design of Micro Energy Harvesting System using Thermoplastic Polyurethane and Buck-boost Converter (열가소성 폴리우레탄과 벅-부스트 컨버터를 이용한 마이크로 에너지 포집시스템 설계)

  • Son, Young-Dae;Kim, Gue-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.560-565
    • /
    • 2011
  • This paper proposes the design of micro energy harvesting system by using thermoplastic polyurethane(TPU), which harvests electric energy from the kinetic energy of pedestrian and drives the desired load, and applied it to the self-generating shoes. Also, we designed the buck-boost converter in discontinuous conduction mode(DCM) which functions as a resistor emulator(RE) such that converter's average input current is proportional to input voltage, and it results in transfer of maximum power to buck-boost converter according to control behavior that converter's input resistance is matched with TPU's internal resistance. Therefore, this paper confirms the validity of proposed control scheme and possibility of application for self-generating shoes, from the obtained characteristic of designed micro energy harvesting system by using a TPU and buck-boost converter in DCM.

A Study of MPPT Control Algorithm for Boost Converter of Photovoltaic System Considering Capacitor Equivalent Series Resistance (커패시턴스 내부저항을 고려한 태양광용 Boost 컨버터에 대한 MPPT 제어 알고리듬 고찰)

  • Choi J. Y.;Yu G. J.;Lee D. G.;Lee K. O.;Jung Y. S.;Kim K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.109-114
    • /
    • 2001
  • Photovoltaic systems normally use a maximum power point tracking (MPPT) technique to continuously deliver the highest possible power to the load when variations in the insolation and temperature occur. A simple method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter. This paper aims at modeling boost converter including equivalent series resistance of input reservoir capacitor by state-space-averaging method. In the future, properly designed controller for compensation will be constructed for maximum photovoltaic power tracking control.

  • PDF

Boost Converter Modelling of Photovoltaic Conditioning System Considering Input Capacitor (입력 커패시턴스를 포함한 PV Boost Converter 모델링)

  • Choi, Ju-Yeop;Lee, Ki-Ok;Choy, Ick;Song, Seung-Ho;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.85-95
    • /
    • 2008
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.

Maximum Power Point Tracker for Permanent Magnet Synchronous Generator Based Wind Energy System using Fuzzy Logic Algorithm

  • Putri, Adinda Ihsani;Sastrowijoyo, Fajar;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.93-94
    • /
    • 2011
  • The use of boost chopper in Permanent Magnet Synchronous Generator (PMSG) aims to capture maximum power at any wind speed condition. It is reached by adjusting the duty cycle of boost chopper. In this paper, fuzzy logic algorithm is used to find the duty cycle value which yields the maximum power output. This control scheme is verified by PSIM simulation. Another MPPT method is also simulated as a comparison.

  • PDF

Neural Network Controller for a Permanent Magnet Generator Applied in Wind Energy Conversion System

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system (WECS) employing a permanent magnet synchronous generator is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-time of the switching devices of the two converters are supplied by the developed neural network (NN). The effect of sudden changes in wind speed and/ or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simulation with the developed neural network controllers. The results proved also the fast response and robustness of the proposed control system.

Efficiency Improvement of Synchronous Boost Converter with Dead Time Control for Fuel Cell-Battery Hybrid System

  • Kim, Do-Yun;Won, Il-Kuen;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1891-1901
    • /
    • 2017
  • In this paper, optimal control of the fuel cell and design of a high-efficiency power converter is implemented to build a high-priced fuel cell system with minimum capacity. Conventional power converter devices use a non-isolated boost converter for high efficiency while the battery is charged, and reduce its conduction loss by using MOSFETs instead of diodes. However, the efficiency of the boost converter decreases, since overshoot occurs because there is a moment when the body diode of the MOSFET is conducted during the dead time and huge loss occurs when the dead time for the maximum-power-flowing state is used in the low-power-flowing state. The method proposed in this paper is to adjust the dead time of boost and rectifier switches by predicting the power flow to meet the maximum efficiency in every load condition. After analyzing parasite components, the stability and efficiency of the high-efficiency boost converter is improved by predictive compensation of the delay component of each part, and it is proven by simulation and experience. The variation in switching delay times of each switch of the full-bridge converter is compensated by falling time compensation, a control method of PWM, and it is also proven by simulation and experience.

NEURAL NETWORK CONTROLLER FOR A PERMANENT MAGNET GENERATOR APPLIED IN WIND ENERGY CONVERSION SYSTEM

  • Eskander Mona N.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.656-659
    • /
    • 2001
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system(WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network(NN). The effect of sudden changes in wind speed ,and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed neural network controller. The results proved also the fast response and robustness of the proposed control system.

  • PDF

Transformer-Reuse Reconfigurable Synchronous Boost Converter with 20 mV MPPT-Input, 88% Efficiency, and 37 mW Maximum Output Power

  • Im, Jong-Pil;Moon, Seung-Eon;Lyuh, Chun-Gi
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.654-664
    • /
    • 2016
  • This paper presents a transformer-based reconfigurable synchronous boost converter. The lowest maximum power point tracking (MPPT)-input voltage and peak efficiency of the proposed boost converter, 20 mV and 88%, respectively, were achieved using a reconfigurable synchronous structure, static power loss minimization design, and efficiency boost mode change (EBMC) method. The proposed reconfigurable synchronous structure for high efficiency enables both a transformer-based self-startup mode (TSM) and an inductor-based MPPT mode (IMM) with a power PMOS switch instead of a diode. In addition, a static power loss minimization design, which was developed to reduce the leakage current of the native switch and quiescent current of the control blocks, enables a low input operation voltage. Furthermore, the proposed EBMC method is able to change the TSM into IMM with no additional time or energy loss. A prototype chip was implemented using a $0.18-{\mu}m$ CMOS process, and operates within an input voltage range of 9 mV to 1 V, and an output voltage range of 1 V to 3.3 V, and provides a maximum output power of 37 mW.

Boost Converter Modeling of Photovoltaic Conditioning System for MPPT ("PV Converter 모델링"을 적용한 MPPT제어기법)

  • Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;An, Jin-Ung;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.1-13
    • /
    • 2009
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model and compares both methods using Bode plots. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.