• Title/Summary/Keyword: Maximum Boost

Search Result 216, Processing Time 0.034 seconds

The Control Characteristics of PV System Using Discrete Data Signal (이산치 신호를 이용한 PV시스템의 제어특성)

  • 김동휘;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.93-96
    • /
    • 1999
  • Solar cell generate DC power from sunlight whose power is different at any instance according to condition of variables : insolation and temperature. In order to improve the system utility factor and efficiency of energy conversion, it is desirable to operate the PV system at maximum power point of solar cell under different condition. In this paper, Boost chopper is controlled it output voltage with a new discrete control algorithm for MPPT. PWM signal of DC-DC converter are generated with a 89C51 microcontroller. Switching frequency of DC-DC converter is set at 10KHz. Simulation and experimental results show that the PV system studied in this paper is always operated at maximum power point under different maximum power point of solar cells having stabilized output voltage waveform with relatively small ripple component

  • PDF

A Stand-alone Source System using the Solar cell (태양전지를 이용한 독립형 전원시스템)

  • Lee, Jeong-Joon;Jho, Jeong-Min;Sung, Nark-Kuy;Lee, Seung-Hwan;Oh, Bong-Hwan;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2565-2567
    • /
    • 1999
  • The output characteristics of solar cell vary with load and solar insolation. Therefore solar cell must always track maximum power point. If photovoltaic system is stand-alone. It is necessary to maintain for output of voltage source inverter. In this paper, stand-alone photovoltaic system consists of boost chopper and voltage source inverter. We make it to track maximum power point by revolution of solar cell array instead of detecting situation of sun in any conditions. And we prove that maximum power point tracking by revolution of solar cell array is better than fixed solar cell.

  • PDF

Analysis of the Effects of the Irradiation and Cell-Temperature on the Dynamic Responses of PV System with MPPT (태양광의 세기와 셀 온도가 최대전력 추종을 하는 태양광 발전의 동특성에 미치는 영향 분석)

  • Loc, Nguyen Khanh;Moon, Dae-Seong;Seo, Jae-Jin;Won, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1142-1143
    • /
    • 2008
  • As well known, the maximum power point tracking (MPPT) is an important role in photovoltaic (PV) power systems. MPPT finds and maintains the operation of PV at the maximum power point when the irradiation and cell-temperature change. In this paper, the studied system includes a PV array, a Buck-Boost DC/DC converter, a DC/AC inverter and it is connected to the three phase power system. The solar array operates as a non-linear voltage source. The P&O algorithm with power feed-back is used to control the operating point of PV array at the maximum power point. The effects of irradiation and cell-temperature on the dynamic responses are also considered.

  • PDF

A Study on DSP Conrolled Photovoltaic System with Maximum Power Tracking

  • Ahn, Jeong-Joon;Kim, Jae-Mun;Kim, Yuen-Chung;Lee, Joung-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.966-971
    • /
    • 1998
  • The studies on the photovoltaic system are extensively exhaustible and broadly available resourse as a future energy supply. In this paper, a new maximum power point tracker(MPPT) using neural network theory is proposed to improve energy conversion efficiency. The boost converter and neural network controller(NNC) were employed so that the operating point of solar cell was located at the Maximum Power Point. And the back propagation algorithm with one input layer of two inputs(E, CE) and output layer(cnntrol value) was applied to train a neural network. Simulation and experimental results show that the performance of NNC in MPPT of photovoltaic array is better than that of controller based upon the Hill Climbing Method.

  • PDF

Hyperfractionated Radiotherapy with Concomitant Boost Technique for Unresectable Non-Small Cell Carcinoma of the Lung (절제 불가능한 비소세포 폐암의 다분할조사 방사선 치료)

  • Chun, Ha-Chung;Lee, Myung-Za
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.221-225
    • /
    • 1991
  • Twenty five patients with unresectable non-small cell carcinoma of the lung have been treated with hyperfractionated radiotherapy with concomitant boost technique since September, 1989. Those patients with history of previous surgery or chemotherapy, pleural effusion or significant weight loss (greater than $10\%$ of body weight) were excluded from the study. Initially, 27 Gy were delivered in 15 fractions in 3 weeks to the large field. Thereafter, large field received 1.8 Gy and cone down boost field received 1.4 Gy with twice a day fractinations up to 49.4 Gy. After 49.4Gy, only boost field was treated twice a day with 1.8 and 1.4 Gy. Total tumor doses were 62.2 Gy for 12 patients and 65.4 Gy for remaining 13 patients. Follow up period was ranged from 6 to 24 month. Actuarial survival rates at 6, 12, and 18 month were $88\%,\;62\%,\;and\;38\%$, respectively. Corresponding disease free suwival rates were $88\%,\;41\%,\;and\;21\%$, respectively. Actuarial cumulative local failure rates at 9, 12 and 15 month were $36\%,\;43\%,\;and\;59\%$, respectively. No significant increase of acute or late complications including radiation pneumonitis was noted with maximum follow up of 24 month. Although the longer follow up is needed, it is worthwhile to try the prospective randomized study to evaluate the efficacy of hyperfractionated radiotherapy with concomitant boost technique for unresectable non-small cell lung cancers in view of excellent tolerance of this treatment. In the future, further increase of total radiation dose might be necessary to improve local control for non-small cell lung cancer.

  • PDF

Sensorless MPPT control using a buck-boost converter in the grid-connected small wind power system (벅-부스트 컨버터를 이용한 계통연계형 소형풍력발전시스템의 센서리스 MPPT 제어)

  • Lee, Hyun-Hee;Choi, Dae-Keun;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.259-260
    • /
    • 2011
  • 본 논문은 벅-부스트 컨버터의 듀티비 제어를 통해 풍력발전시스템이 최대 효율을 갖도록 MPPT (Maximum power point tracking) 알고리즘을 구현하고, 발전된 전력을 계통으로 전달하기 위한 인버터 제어방법 및 시스템 구성을 제안한다. 특히 풍속정보와 발전기 속도를 제거하여 센서로 인한 단점들을 배제하였고, 제안한 풍력발전시스템과 알고리즘의 유용성을 시뮬레이션을 통해 검증한다.

  • PDF

A 0.2V DC/DC Boost Converter with Regulated Output for Thermoelectric Energy Harvesting (열전 에너지 하베스팅을 위한 안정화된 출력을 갖는 0.2V DC/DC 부스트 변환기)

  • Cho, Yong-hwan;Kang, Bo-kyung;Kim, Sun-hui;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.565-568
    • /
    • 2014
  • This paper presents a 0.2V DC/DC boost converter with regulated output for thermoelectric energy harvesting. To use low voltages from a thermoelectric device, a start-up circuit consisting of native NMOS transistors and resistors boosts an internal VDD, and the boosted VDD is used to operate the internal control block. When the VDD reaches a predefined value, a detector circuit makes the start-up block turn off to minimize current consumption. The final boosted VSTO is achieved by alternately operating the sub-boost converter for VDD and the main boost converter for VSTO according to the comparator outputs. When the VSTO reaches 2.4V, a buck converter starts to operate to generate a stabilized output VOUT. Simulation results shows that the designed converter generates a regulated 1.8V output from an input voltage of 0.2V, and its maximum power efficiency is 60%. The chip designed using a $0.35{\mu}m$ CMOS process occupies $1.1mm{\times}1.0mm$ including pads.

  • PDF

Comparative Study between Two-loop and Single-loop Control of DC/DC Converter for PVPCS (PVPCS DC/DC 컨버터 모델링 및 2중 루프 제어와 단일 루프 제어의 특성 비교)

  • Kim, Dong-Hwan;Jung, Seung-Hwan;Song, Seung-Ho;Choi, Ju-Yeop;Choi, Ick;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.245-254
    • /
    • 2012
  • In photovoltaic system, the characteristics of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, the boost converter of a PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristics of the boost converter by comparing single-loop and two-loop control algorithm using both analog and digital control. Both proposed compensation methods have been verified with computer simulation to demonstrate the validity of the proposed control schemes.

A 100MHz DC-DC Converter Using Integrated Inductor and Capacitor as a Power Module for SoC Power Management (SoC 전원 관리를 위한 인덕터와 커패시터 내장형 100MHz DC-DC 부스트 변환기)

  • Lee, Min-Woo;Kim, Hyoung-Joong;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.31-40
    • /
    • 2009
  • This paper presents a design of a high performance DC-DC boost converter as a power module for SOC designs. It applied to this chip that reduced inductor and capacitor for integrating on a chip, and it operates with a switching frequency of 100MHz. It has reliability and stability in high switching frequency. The controller of DC-DC boost converter is designed by voltage-mode control method and compensated properly. The designed DC-DC converter is fabricated with the 0.18${\mu}m$ standard CMOS technology with a thick-gate oxide option. The overall die size is 8.14$mm^2$, and controller size is 1.15$mm^2$. The converter has the maximum efficiency over 76% for the output voltage of 4V and load current larger 300mA. The load regulation is 0.012% (0.5mV) for the load current change of 100mA.

A Dual-Input Energy Harvesting Charger with MPPT Control (MPPT 제어 기능을 갖는 이중 입력 에너지 하베스팅 충전기)

  • Jeong, Chan-ho;Kim, Yong-seung;Jeong, Hyo-bum;Yang, Min-jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.484-487
    • /
    • 2015
  • This paper describes a dual-input battery charger with MPPT control using photovoltaic and piezoelectric energy. Each energy is harvested from photovoltaic cells and piezoelectric cells and is stored to each capacitor. The battery voltage is boosted by charger block and two energy sources are used as input to charge battery capacitor. A DC-DC boost converter is designed to boost the battery voltage, and inductor sharing technique is employed such that only one inductor is required. The time division ratio for piezoelectric cell and photovoltaic cell is set to 8:1. The proposed circuit is designed in a 0.35um CMOS process technology. The condition of battery capacitor is managed by battery management block and the battery voltage can be boosted up to 3V. The maximum efficiency of the designed entire system is 88.56%, and the chip area including pads is $1230um{\times}1330um$.

  • PDF