• 제목/요약/키워드: Maximum Adjacency (MA)-merging

검색결과 2건 처리시간 0.015초

최대 인접 병합 방법을 적용한 방향 그래프의 병목지점 탐색 알고리즘 (A Bottleneck Search Algorithm for Digraph Using Maximum Adjacency Merging Method)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.129-139
    • /
    • 2012
  • 공급처 s와 수요처 t, 호가 수용량을 갖고 있는 방향 그래프 망 $D=(N,A),n{\in}N,a=c(u,v){\in}A$에 대해, 공급처 s에서 수요처 t로의 최대 흐름양은 N을 $s{\in}S$$t{\in}T$의 집합으로 분리시키는 최소절단값이 결정한다. 최소절단을 찾는 대표적인 알고리즘으로는 수행복잡도 $O(NA^2)$의 Ford-Fulkerson이 있다. 이 알고리즘은 가능한 모든 증대경로를 탐색하여 병목지점을 결정한다. 알고리즘이 종료되면 병목지점들의 조합으로 N=S+T의 절단이 되는 최소 절단을 결정해야 한다. 본 논문은 S={s}, T={t}를 초기값으로 설정하고, 망의 최대 수용량 호 $_{max}c(u,v)$를 인접한 S나 T로 병합시키고 절단값을 구하는 최대인접병합 알고리즘을 제안하였다. 최대인접병합 알고리즘은 n-1회를 수행하지만 알고리즘 수행 과정에서 최소절단을 찾는 장점을 갖고 있다. Ford-Fulkerson과 최대인접병합 알고리즘을 다양한 8개의 방향 그래프에 적용한 결과 제안된 알고리즘은 수행복잡도 O(N)인 n-1회 수행 과정에서 최소절단을 쉽게 찾을 수 있었다.

무방향 그래프의 최대인접병합 방법을 적용한 최소절단 알고리즘 (A Minimum Cut Algorithm Using Maximum Adjacency Merging Method of Undirected Graph)

  • 최명복;이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.143-152
    • /
    • 2013
  • 주어진 그래프 G=(V,E), n=|V|, m=|E|에 대해 최소절단을 찾는 연구는 공급처 s와 수요처 t가 주어지지 않은 경우와 주어진 경우로 구분된다. s와 t가 주어지지 않은 무방향 가중 그래프에 대한 Stoer-Wagner 알고리즘은 임의의 정점을 고정시키고 최대 인접 순서로 나열하여 마지막 정점의 절단 값과 마지막 2개 정점을 병합하면서 정점을 축소시키는 방법으로 $\frac{n(n-1)}{2}$회를 수행한다. 또한, s와 t가 주어진 그래프에 대한 Ford-Fulkerson 알고리즘은 증대경로를 탐색하여 절단 간선을 결정한다. 더 이상의 증대 경로가 없으면 절단 간선들의 조합으로 최소절단을 결정해야 한다. 본 논문은 단일 s와 t가 주어진 무방향 가중 그래프에 대해 최대인접 병합과 절단값을 동시에 계산하는 방법으로 n-1회 수행으로 단축시켰다. 또한, Stoer-Wagner 알고리즘은 최소 절단을 기준으로 V=S+T로 양분하지 못할 수 있는데 반해 제안된 알고리즘은 정확히 양분시켰다. 제안된 알고리즘은 Ford-Fulkerson의 증대경로를 찾는 수행횟수보다 많이 수행하지만 수행과정에서 최소절단을 결정하는 장점이 있다.