• Title/Summary/Keyword: Maxent model

Search Result 37, Processing Time 0.021 seconds

Comparison of Logistic, Bayesian, and Maxent Modelsfor Prediction of Landslide Distribution (산사태 분포 예측을 위한 로지스틱, 베이지안, Maxent의 비교)

  • Al-Mamun, Al-Mamun;Jang, Dong-Ho;Park, Jongchul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.91-101
    • /
    • 2017
  • Quantitative forecasting methods based on spatial data and geographic information system have been used in predicting the landslide location. This study compared the simulated results of logistic, Bayesian, and maximum entropy models to understand the uncertainties of each model and identify the main factors that influence landslide. The study area is Boeun gun where 388 landslides occurred in the year of 1998. The verification results showed that the AUC of the three models was 0.84. However, the landslide susceptibility distribution of Maxent model was different from those of the other two models. With the same landslide occurrence data, the result of high susceptible area in Maxent model is smaller than Logistic or Bayesian. Maxent model, however, proved to be more efficient in predicting landslide than the other two models. In Maxent's simulations, the responsible factors for landslide susceptibility are timber age class, land cover, timber diameter, crown closure, and soil drainage. The results suggest that it is necessary to consider the possibility of overestimation when using Logistic or Bayesian model, and forest management around the study area can be an effective way to minimize landslide possibility.

Comparison of Species Distribution Models According to Location Data (위치자료의 종류에 따른 생물종 분포모형 비교 연구)

  • Seo, Chang-Wan;Park, Yu-Ri;Choi, Yun-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.59-64
    • /
    • 2008
  • We need to use the strength of each Species Distribution Model(SDM) because presence location data were only collected due to time and economic limitations in Korea. This study investigated and compared GAM(Generalized Additive Model) which is one of presence-absence models with Maxent(Maximum Entropy Model) which is one of presence only models according to location data(presence/absence data). The target species was Fisher(Martes pennanti) which is an endangered species in California, USA. We implemented environmental data such as topography, climate and vegetation, and applied models to sub-regions and study area. The results of this study were as follows. Firstly, GAM which used real presence and absence data was better than GAM which used pseudo-absence data and Maxent which used presence-only data. Secondly, Maxent was better than GAM when presence-only data were used. Lastly, each model which applied to different regions didn't predict other area well due to the difference of habitat environment and over-predicted outside of study area. We need to select an optimal model to predict a suitable habitat according to the type and distribution of location data.

  • PDF

A Comparison of Machine Learning Species Distribution Methods for Habitat Analysis of the Korea Water Deer (Hydropotes inermis argyropus) (고라니 서식지 분석을 위한 기계학습식 종분포모형 비교)

  • Song, Won-Kyong;Kim, Eun-Young
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.171-180
    • /
    • 2012
  • The field of wildlife habitat conservation research has attracted attention as integrated biodiversity management strategies. Considering the status of the species surveying data and the environmental variables in Korea, the GARP and Maxent models optimized for presence-only data could be one of the most suitable models in habitat modeling. For make sure applicability in the domestic environment we applied the machine learning species distribution model for analyzing habitats of the Korea water deer($Hydropotes$ $inermis$ $argyropus$) in the $Sapgyocheon$ watershed, $Chungcheong$ province. We used the $3^{rd}$ National Natural Environment Survey data and 10 environment variables by literature review for the modelling. Analysis results showed that habitats for the Korea water deer were predicted 16.3%(Maxent) and 27.1%(GARP), respectively. In terms of accuracy(training/test) the Maxent(0.85/0.69) was higher than the GARP(0.65/0.61), and the Spearman's rank correlation coefficient result of the Maxent(${\rho}$=0.71, p<0.01) was higher than the result of GARP(${\rho}$=0.55, p<0.05). However results could be depended on sites and target species, therefore selection of the appropriate model considering on the situation will be important to analyzing habitats.

Prediction on Habitat Distribution in Mt. Inwang and Mt. An Using Maxent (Maxent 모형을 활용한 인왕산-안산 서식지 분포 예측)

  • Seo, Saebyul;Lee, Minjee;Kim, Jaejoo;Chun, Seung-Hoon;Lee, Sangdon
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.432-441
    • /
    • 2016
  • In this study, we predicted species distributions in Mt. Inwang and Mt. An as preceding research to build ecological corridor by considering connectivity of habitats which have been fragmented in the city. We analyzed species distributions by using Maxent (Maximum Entropy Approach) model with species presence. We used 23 points of mammals and 15 points of Titmouse (Parus major, P. palustris, P. varius) as target species from appearance points of species examined. We build 4 geography factors, 4 vegetation factors, and 2 distance factors as model variables In case of mammals, factors that affected species distribution model was Digital Elevation Model(DEM, 34%) followed by Distance from edge forest to interior (24.8%) and Species of tree (10%). On the other hand, in case of Parus species, factors that affected species distribution model were DEM (39.6%) followed by distance from road (35.4%) and Density-class (8.2%). Therefore, birds and mammals prefer interior of mountain, and this area needs to be protected.

A Study on the Species Distribution Modeling using National Ecosystem Survey Data (전국자연환경조사 자료를 이용한 종분포모형 연구)

  • Kim, Jiyeon;Seo, Changwan;Kwon, Hyuksoo;Ryu, Jieun;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.4
    • /
    • pp.593-607
    • /
    • 2012
  • The Ministry of Environment have started the 'National Ecosystem Survey' since 1986. It has been carried out nationwide every ten years as the largest survey project in Korea. The second one and the third one produced the GIS-based inventory of species. Three survey methods were different from each other. There were few studies for species distribution using national survey data in Korea. The purposes of this study are to test species distribution models for finding the most suitable modeling methods for the National Ecosystem Survey data and to investigate the modeling results according to survey methods and taxonominal group. Occurrence data of nine species were extracted from the National Ecosystem Survey by taxonomical group (plant, mammal, and bird). Plants are Korean winter hazel (Corylopsis coreana), Iris odaesanensis (Iris odaesanensis), and Berchemia (Berchemia berchemiaefolia). Mammals are Korean Goral (Nemorhaedus goral), Marten (Martes flavigula koreana), and Leopard cat (Felis bengalensis). Birds are Black Woodpecker (Dryocopus martius), Eagle Owl (Bubo Bubo), and Common Buzzard (Buteo buteo). Environmental variables consisted of climate, topography, soil and vegetation structure. Two modeling methods (GAM, Maxent) were tested across nine species, and predictive species maps of target species were produced. The results of this study were as follows. Firstly, Maxent showed similar 5 cross-validated AUC with GAM. Maxent is more useful model to develop than GAM because National Ecosystem Survey data has presence-only data. Therefore, Maxent is more useful species distribution model for National Ecosystem Survey data. Secondly, the modeling results between the second and third survey methods showed sometimes different because of each different surveying methods. Therefore, we need to combine two data for producing a reasonable result. Lastly, modeling result showed different predicted distribution pattern by taxonominal group. These results should be considered if we want to develop a species distribution model using the National Ecosystem Survey and apply it to a nationwide biodiversity research.

Habitat Potential Evaluation Using Maxent Model - Focused on Riparian Distance, Stream Order and Land Use - (Maxent 모형을 이용한 서식지 잠재력 평가 - 하천으로부터의 거리, 하천의 차수, 토지이용을 중심으로-)

  • Lee, Dong-Kun;Kim, Ho-Gul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.161-172
    • /
    • 2010
  • As the interest on biodiversity has increased around the world, researches about evaluating potential for habitat are also increasing to find and comprehend the valuable habitats. This study focus on comprehending the significance of stream in evaluating habitat's potential. The purpose of this study is to evaluate habitat potential with applying stream as a main variable, and to comprehend the relationship between the variables and habitat potential. Basin is a unit that has hydrological properties and dynamic interaction with ecosystem. Especially, biodiversity and suitability of habitat in basin area has direct correlation with stream. Existing studies also are proposing for habitat potential evaluation in basin unit, they applied forest, slope and road as main variables. Despite stream is considered the most important factor in basin area, researchers haven't applied stream as a main variable. Therefore, in this study, three variables that can demonstrate hydrological properties are selected, which are, riparian distance, stream order and land use disturbance, and evaluate habitat potential. Habitat potential is analyzed by using Maxent (Maximum entropy model), and vertebrate's presence data is used as dependent variables and stream order map and land cover map is used as base data of independent variables. As a result of analysis, habitat potential is higher at riparian and upstream area, and lower at frequently disturbed area. Result indicates that adjacent to stream, upstream, and less disturbed area is the habitat that vertebrate prefer. In particular, mammals prefer adjacent area of stream and forest and reptiles prefer upriver area. Birds prefer adjacent area of stream and midstream and amphibians prefer adjacent area of stream and upriver. The result of this research could help to establish habitat conservation strategy around basin unit in the future.

Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach (Maxent 모델을 이용한 반달가슴곰의 서식지 분포변화 예측)

  • Kim, Tae-Geun;Yang, DooHa;Cho, YoungHo;Song, Kyo-Hong;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.197-207
    • /
    • 2016
  • This study aims at providing basic data to objectively evaluate the areas suitable for reintroduction of the species of Asiatic black bear (Ursus thibetanus) in order to effectively preserve the Asiatic black bears in the Korean protection areas including national parks, and for the species restoration success. To this end, this study predicted the potential habitats in East Asia, Southeast Asia and India, where there are the records of Asiatic black bears' appearances using the Maxent model and environmental variables related with climate, topography, road and land use. In addition, this study evaluated the effects of the relevant climate and environmental variables. This study also analyzed inhabitation range area suitable for Asiatic black and geographic change according to future climate change. As for the judgment accuracy of the Maxent model widely utilized for habitat distribution research of wildlife for preservation, AUC value was calculated as 0.893 (sd=0.121). This was useful in predicting Asiatic black bears' potential habitat and evaluate the habitat change characteristics according to future climate change. Compare to the distribution map of Asiatic black bears evaluated by IUCN, Habitat suitability by the Maxent model were regionally diverse in extant areas and low in the extinct areas from IUCN map. This can be the result reflecting the regional difference in the environmental conditions where Asiatic black bears inhabit. As for the environment affecting the potential habitat distribution of Asiatic black bears, inhabitation rate was the highest, according to land coverage type, compared to climate, topography and artificial factors like distance from road. Especially, the area of deciduous broadleaf forest was predicted to be preferred, in comparison with other land coverage types. Annual mean precipitation and the precipitation during the driest period were projected to affect more than temperature's annual range, and the inhabitation possibility was higher, as distance was farther from road. The reason is that Asiatic black bears are conjectured to prefer more stable area without human's intervention, as well as prey resource. The inhabitation range was predicted to be expanded gradually to the southern part of India, China's southeast coast and adjacent inland area, and Vietnam, Laos and Malaysia in the eastern coastal areas of Southeast Asia. The following areas are forecast to be the core areas, where Asiatic black bears can inhabit in the Asian region: Jeonnam, Jeonbuk and Gangwon areas in South Korea, Kyushu, Chugoku, Shikoku, Chubu, Kanto and Tohoku's border area in Japan, and Jiangxi, Zhejiang and Fujian border area in China. This study is expected to be used as basic data for the preservation and efficient management of Asiatic black bear's habitat, artificially introduced individual bear's release area selection, and the management of collision zones with humans.

A Comparative Study on Species Richness and Land Suitability Assessment - Focused on city in Boryeong - (종풍부도와 세분화된 관리지역 비교 연구 - 보령시를 대상으로 -)

  • Shin, Manseok;Jang, Raeik;Seo, Changwan;Lee, Myungwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.35-50
    • /
    • 2015
  • The purposes of this study are to apply species distribution modeling in urban management planning for habitat conservation in non-urban area and to provide a detailed classification method for management zone. To achieve these objectives, Species Distribution Model was used to generate species richness and then to compare with the results from land suitability assessment. 59 species distribution models were developed by Maxent. This study used 15 model variables (5 topographical variables, 4 vegetation variables, and 6 distance variables) for Maxent models. Then species richness was created by sum of predicted species distributions. Land suitability assessment was conducted with criteria from type I of "Guidelines for land suitability assessment". After acquiring evaluation values from species richness and land suitability assessment, the results from these two models were compared according to the five grades of classification. The areas with the identical grade in Species richness and land suitability assessment are categorized and then compared each other. The comparison results are Grade1 10.92%, Grade2 37.10%, Grade3 34.56%, Grade4 20.89% and Grade5 1.73%. Grade1 and Grade5 showed the lowest agreement rate. Namely, development or conservation grade showed high disagreement between two assessment system. Therefore, the areas located between urban, agriculture, forest, and reserve have a tendency to change easily by development plans. Even though management areas are not the core area of reserve, it is important to provide a venue for species habitat and eco-corridor to protect and improve biodiversity in terms of landscape ecology. Consequently, adoption of species richness in three levels of management area classification such as conservation, production, planning should be considered in urban management plan.

Application of Species Distribution Model for Predicting Areas at Risk of Highly Pathogenic Avian Influenza in the Republic of Korea (종 분포 모형을 이용한 국내 고병원성 조류인플루엔자 발생 위험지역 추정)

  • Kim, Euttm;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • While research findings suggest that the highly pathogenic avian influenza (HPAI) is the leading cause of economic loss in Korean poultry industry with an estimated cumulative impact of $909 million since 2003, identifying the environmental and anthropogenic risk factors involved remains a challenge. The objective of this study was to identify areas at high risk for potential HPAI outbreaks according to the likelihood of HPAI virus detection in wild birds. This study integrates spatial information regarding HPAI surveillance with relevant demographic and environmental factors collected between 2003 and 2018. The Maximum Entropy (Maxent) species distribution modeling with presence-only data was used to model the spatial risk of HPAI virus. We used historical data on HPAI occurrence in wild birds during the period 2003-2018, collected by the National Quarantine Inspection Agency of Korea. The database contains a total of 1,065 HPAI cases (farms) tied to 168 unique locations for wild birds. Among the environmental variables, the most effective predictors of the potential distribution of HPAI in wild birds were (in order of importance) altitude, number of HPAI outbreaks at farm-level, daily amount of manure processed and number of wild birds migrated into Korea. The area under the receiver operating characteristic curve for the 10 Maxent replicate runs of the model with twelve variables was 0.855 with a standard deviation of 0.012 which indicates that the model performance was excellent. Results revealed that geographic area at risk of HPAI is heterogeneously distributed throughout the country with higher likelihood in the west and coastal areas. The results may help biosecurity authority to design risk-based surveillance and implementation of control interventions optimized for the areas at highest risk of HPAI outbreak potentials.

Habitat Analysis Study of Honeybees(Apis mellifera) in Urban Area Using Species Distribution Modeling - Focused on Cheonan - (종분포모형을 이용한 도시 내 양봉꿀벌 서식환경 분석 연구 - 천안시를 중심으로 -)

  • Kim, Whee-Moon;Song, Won-Kyong;Kim, Seoung-Yeal;Hyung, Eun-Jeong;Lee, Seung-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.3
    • /
    • pp.55-64
    • /
    • 2017
  • The problem of the population number of honeybees that is decreasing not only domestically but also globally, has a great influence on human beings and the entire ecosystem. The habitat of honeybees is recognized to be superior in urban environment rather than rural environment, and predicting for habitat assessment and conservation is necessary. Based on this, we targeted Cheonan City and neighboring administrative areas where the distribution of agricultural areas, urban areas, and forest areas is displayed equally. In order to predict the habitat preferred by honeybees, we apply the Maxent model what based on the presence information of the species. We also selected 10 environmental variables expected to influence honeybees habitat environment through literature survey. As a result of constructing the species distribution model using the Maxent model, 71.7% of the training data were shown on the AUC(Area Under Cover) basis, and it was be confirmed with an area of 20.73% in the whole target area, based on the 50% probability of presence of honeybees. It was confirmed that the contribution of the variable has influence on land covering, distance from the forest, altitude, aspect. Based on this, the possibility of honeybee's habitat characteristics were confirmed to be higher in wetland environment, in agricultural land, close to forest and lower elevation, southeast and west. The prediction of these habitat environments has significance as a lead research that presents the habitat of honeybees with high conservation value of ecosystems in terms of urban space, and it will be useful for future urban park planning and conservation area selection.