• Title/Summary/Keyword: Max Pooling

Search Result 30, Processing Time 0.028 seconds

A Method of Eye and Lip Region Detection using Faster R-CNN in Face Image (초고속 R-CNN을 이용한 얼굴영상에서 눈 및 입술영역 검출방법)

  • Lee, Jeong-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.1-8
    • /
    • 2018
  • In the field of biometric security such as face and iris recognition, it is essential to extract facial features such as eyes and lips. In this paper, we have studied a method of detecting eye and lip region in face image using faster R-CNN. The faster R-CNN is an object detection method using deep running and is well known to have superior performance compared to the conventional feature-based method. In this paper, feature maps are extracted by applying convolution, linear rectification process, and max pooling process to facial images in order. The RPN(region proposal network) is learned using the feature map to detect the region proposal. Then, eye and lip detector are learned by using the region proposal and feature map. In order to examine the performance of the proposed method, we experimented with 800 face images of Korean men and women. We used 480 images for the learning phase and 320 images for the test one. Computer simulation showed that the average precision of eye and lip region detection for 50 epoch cases is 97.7% and 91.0%, respectively.

Classification Algorithms for Human and Dog Movement Based on Micro-Doppler Signals

  • Lee, Jeehyun;Kwon, Jihoon;Bae, Jin-Ho;Lee, Chong Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • We propose classification algorithms for human and dog movement. The proposed algorithms use micro-Doppler signals obtained from humans and dogs moving in four different directions. A two-stage classifier based on a support vector machine (SVM) is proposed, which uses a radial-based function (RBF) kernel and $16^{th}$-order linear predictive code (LPC) coefficients as feature vectors. With the proposed algorithms, we obtain the best classification results when a first-level SVM classifies the type of movement, and then, a second-level SVM classifies the moving object. We obtain the correct classification probability 95.54% of the time, on average. Next, to deal with the difficult classification problem of human and dog running, we propose a two-layer convolutional neural network (CNN). The proposed CNN is composed of six ($6{\times}6$) convolution filters at the first and second layers, with ($5{\times}5$) max pooling for the first layer and ($2{\times}2$) max pooling for the second layer. The proposed CNN-based classifier adopts an auto regressive spectrogram as the feature image obtained from the $16^{th}$-order LPC vectors for a specific time duration. The proposed CNN exhibits 100% classification accuracy and outperforms the SVM-based classifier. These results show that the proposed classifiers can be used for human and dog classification systems and also for classification problems using data obtained from an ultra-wideband (UWB) sensor.

A Method for accelerating training of Convolutional Neural Network (합성곱 신경망의 학습 가속화를 위한 방법)

  • Choi, Se Jin;Jung, Jun Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.171-175
    • /
    • 2017
  • Recently, Training of the convolutional neural network (CNN) entails many iterative computations. Therefore, a method of accelerating the training speed through parallel processing using the hardware specifications of GPGPU is actively researched. In this paper, the operations of the feature extraction unit and the classification unit are divided into blocks and threads of GPGPU and processed in parallel. Convolution and Pooling operations of the feature extraction unit are processed in parallel at once without sequentially processing. As a result, proposed method improved the training time about 314%.

Sampling-based Super Resolution U-net for Pattern Expression of Local Areas (국소부위 패턴 표현을 위한 샘플링 기반 초해상도 U-Net)

  • Lee, Kyo-Seok;Gal, Won-Mo;Lim, Myung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.185-191
    • /
    • 2022
  • In this study, we propose a novel super-resolution neural network based on U-Net, residual neural network, and sub-pixel convolution. To prevent the loss of detailed information due to the max pooling of U-Net, we propose down-sampling and connection using sub-pixel convolution. This uses all pixels in the filter, unlike the max pooling that creates a new feature map with only the max value in the filter. As a 2×2 size filter passes, it creates a feature map consisting only of pixels in the upper left, upper right, lower left, and lower right. This makes it half the size and quadruple the number of feature maps. And we propose two methods to reduce the computation. The first uses sub-pixel convolution, which has no computation, and has better performance, instead of up-convolution. The second uses a layer that adds two feature maps instead of the connection layer of the U-Net. Experiments with a banchmark dataset show better PSNR values on all scale and benchmark datasets except for set5 data on scale 2, and well represent local area patterns.

Multiscale Spatial Position Coding under Locality Constraint for Action Recognition

  • Yang, Jiang-feng;Ma, Zheng;Xie, Mei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1851-1863
    • /
    • 2015
  • – In the paper, to handle the problem of traditional bag-of-features model ignoring the spatial relationship of local features in human action recognition, we proposed a Multiscale Spatial Position Coding under Locality Constraint method. Specifically, to describe this spatial relationship, we proposed a mixed feature combining motion feature and multi-spatial-scale configuration. To utilize temporal information between features, sub spatial-temporal-volumes are built. Next, the pooled features of sub-STVs are obtained via max-pooling method. In classification stage, the Locality-Constrained Group Sparse Representation is adopted to utilize the intrinsic group information of the sub-STV features. The experimental results on the KTH, Weizmann, and UCF sports datasets show that our action recognition system outperforms the classical local ST feature-based recognition systems published recently.

Machine Learning-Based EEG Classification for Assisting the Diagnosis of ADHD in Children (아동의 ADHD 진단 보조를 위한 기계 학습 기반의 뇌전도 분류)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1336-1345
    • /
    • 2021
  • Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurological disorders in children. The diagnosis of ADHD in children is based on the interviews and observation reports of parents or teachers who have stayed with them. Since this approach cannot avoid long observation time and the bias of observers, another approach based on Electroencephalography(EEG) is emerging. The goal of this study is to develop an assistive tool for diagnosing ADHD by EEG classification. This study explores the frequency bands of EEG and extracts the implied features in them by using the proposed CNN. The CNN architecture has three Convolution-MaxPooling blocks and two fully connected layers. As a result of the experiment, the 30-60 Hz gamma band showed dominant characteristics in identifying EEG, and when other frequency bands were added to the gamma band, the EEG classification performance was improved. They also show that the proposed CNN is effective in detecting ADHD in children.

Evaluation of Classification and Accuracy in Chest X-ray Images using Deep Learning with Convolution Neural Network (컨볼루션 뉴럴 네트워크 기반의 딥러닝을 이용한 흉부 X-ray 영상의 분류 및 정확도 평가)

  • Song, Ho-Jun;Lee, Eun-Byeol;Jo, Heung-Joon;Park, Se-Young;Kim, So-Young;Kim, Hyeon-Jeong;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2020
  • The purpose of this study was learning about chest X-ray image classification and accuracy research through Deep Learning using big data technology with Convolution Neural Network. Normal 1,583 and Pneumonia 4,289 were used in chest X-ray images. The data were classified as train (88.8%), validation (0.2%) and test (11%). Constructed as Convolution Layer, Max pooling layer size 2×2, Flatten layer, and Image Data Generator. The number of filters, filter size, drop out, epoch, batch size, and loss function values were set when the Convolution layer were 3 and 4 respectively. The test data verification results showed that the predicted accuracy was 94.67% when the number of filters was 64-128-128-128, filter size 3×3, drop out 0.25, epoch 5, batch size 15, and loss function RMSprop was 4. In this study, the classification of chest X-ray Normal and Pneumonia was predictable with high accuracy, and it is believed to be of great help not only to chest X-ray images but also to other medical images.

A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models (Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구)

  • Jeon, Hyungyun;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.999-1009
    • /
    • 2019
  • The importance of high-resolution sea ice maps of the Arctic Ocean is increasing due to the possibility of pioneering North Pole Routes and the necessity of precise climate prediction models. In this study,sea ice classification algorithms for two deep learning models were examined using Sentinel-1 A/B SAR data to generate high-resolution sea ice classification maps. Based on current ice charts, three classes (Open Water, First Year Ice, Multi Year Ice) of training data sets were generated by Arctic sea ice and remote sensing experts. Ten sea ice classification algorithms were generated by combing two deep learning models (i.e. Simple CNN and Resnet50) and five cases of input bands including incident angles and thermal noise corrected HV bands. For the ten algorithms, analyses were performed by comparing classification results with ground truth points. A confusion matrix and Cohen's kappa coefficient were produced for the case that showed best result. Furthermore, the classification result with the Maximum Likelihood Classifier that has been traditionally employed to classify sea ice. In conclusion, the Convolutional Neural Network case, which has two convolution layers and two max pooling layers, with HV and incident angle input bands shows classification accuracy of 96.66%, and Cohen's kappa coefficient of 0.9499. All deep learning cases shows better classification accuracy than the classification result of the Maximum Likelihood Classifier.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we proposes a Convolutional Neural Networks(CNN) equipped with Batch Normalization(BN) for handwritten digit recognition training the MNIST dataset. Aiming to surpass the performance of LeNet-5 by LeCun et al., a 6-layer neural network was designed. The proposed model processes 28×28 pixel images through convolution, Max Pooling, and Fully connected layers, with the batch normalization to improve learning stability and performance. The experiment utilized 60,000 training images and 10,000 test images, applying the Momentum optimization algorithm. The model configuration used 30 filters with a 5×5 filter size, padding 0, stride 1, and ReLU as activation function. The training process was set with a mini-batch size of 100, 20 epochs in total, and a learning rate of 0.1. As a result, the proposed model achieved a test accuracy of 99.22%, surpassing LeNet-5's 99.05%, and recorded an F1-score of 0.9919, demonstrating the model's performance. Moreover, the 6-layer model proposed in this paper emphasizes model efficiency with a simpler structure compared to LeCun et al.'s LeNet-5 (7-layer model) and the model proposed by Ji, Chun and Kim (10-layer model). The results of this study show potential for application in real industrial applications such as AI vision inspection systems. It is expected to be effectively applied in smart factories, particularly in determining the defective status of parts.

Pointwise CNN for 3D Object Classification on Point Cloud

  • Song, Wei;Liu, Zishu;Tian, Yifei;Fong, Simon
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.787-800
    • /
    • 2021
  • Three-dimensional (3D) object classification tasks using point clouds are widely used in 3D modeling, face recognition, and robotic missions. However, processing raw point clouds directly is problematic for a traditional convolutional network due to the irregular data format of point clouds. This paper proposes a pointwise convolution neural network (CNN) structure that can process point cloud data directly without preprocessing. First, a 2D convolutional layer is introduced to percept coordinate information of each point. Then, multiple 2D convolutional layers and a global max pooling layer are applied to extract global features. Finally, based on the extracted features, fully connected layers predict the class labels of objects. We evaluated the proposed pointwise CNN structure on the ModelNet10 dataset. The proposed structure obtained higher accuracy compared to the existing methods. Experiments using the ModelNet10 dataset also prove that the difference in the point number of point clouds does not significantly influence on the proposed pointwise CNN structure.