• 제목/요약/키워드: Matterport

검색결과 8건 처리시간 0.02초

Matterport와 Unity 3D를 사용한 가상투어 제작 프레임워크에 관한 연구 (A Study on Proposing a Virtual Tour Production Framework Using Matterport and Unity 3D)

  • 강민식
    • 실천공학교육논문지
    • /
    • 제16권5_spc호
    • /
    • pp.701-708
    • /
    • 2024
  • 먼 지역을 탐험하는 데 있어 겪는 어려움은 점점 더 뚜렷해지고 있으며 이러한 어려움에는 시간 제약, 재정적 제한, 언어 장벽 등이 포함된다. 그러나 이러한 문제들은 사용자가 공간을 경험하고 상호작용하는 방식을 변화시키는 최신 기술을 통해 극복할 수 있다. 최근의 발전 덕분에 유명 관광지를 가상으로 재현해 사용자가 마치 실제로 방문한 것처럼 가상 투어를 할 수 있게 되었다. 본 연구에서는 선도적인 3D 스캐닝 기술인 Matterport와 강력한 게임 엔진인 Unity 3D를 사용하여 가상 투어를 만드는 종합적인 프레임워크를 제시한다. 본 연구는 Matterport를 활용한 3D 데이터 캡처, Unity로의 데이터 임포트, 사용자 상호작용 강화, 그리고 전체 경험의 최적화에 대한 방법론을 설명한다. 이러한 도구들을 통합함으로써 이 프레임워크는 몰입형 가상 경험을 제공하는 것을 목표로 한다. 이 접근 방식은 전 세계 유명 관광지에 대한 저렴한 가상 티켓을 제공하여 훌륭한 교육적 기회를 제공할 수 있다. 또한 이 프레임워크는 공항이나 병원과 같은 복잡한 환경에서의 탐색을 용이하게 하는 데에도 적용될 수 있다.

Developing Virtual Tour Content for the Inside and Outside of a Building using Drones and Matterport

  • Tchomdji, Luther Oberlin Kwekam;Park, Soo-jin;Kim, Rihwan
    • International Journal of Contents
    • /
    • 제18권3호
    • /
    • pp.74-84
    • /
    • 2022
  • The global impact of the Covid-19 pandemic on education has resulted in the near-complete closure of schools, early childhood education and care (ECEC) facilities, universities, and colleges. To help the educational system with social distancing during this pandemic, in this paper the creation of a simple 3D virtual tour will be of a great contribution. This web cyber tour will be program with JavaScript programming language. The development of this web cyber tour is to help the students and staffs to have access to the university infrastructure at a faraway distance during this difficult moment of the pandemic. The drone and matterport are the two devices used in the realization of this website tour. As a result, Users will be able to view a 3D model of the university building (drone) as well as a real-time tour of its inside (matterport) before uploading the model for real-time display by the help of this website tour. Since the users can enjoy the 3D model of the university infrastructure with all angles at a far distance through the website, it will solve the problem of Covid-19 infection in the university. It will also provide students who cannot be present on-site, with detailed information about the campus.

시각-언어 이동 에이전트를 위한 복합 학습 (Hybrid Learning for Vision-and-Language Navigation Agents)

  • 오선택;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권9호
    • /
    • pp.281-290
    • /
    • 2020
  • 시각-언어 이동 문제는 시각 이해와 언어 이해 능력을 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각-언어 이동 에이전트를 위한 새로운 학습 모델을 제안한다. 이 모델은 데모 데이터에 기초한 모방 학습과 행동 보상에 기초한 강화 학습을 함께 결합한 복합 학습을 채택하고 있다. 따라서 이 모델은 데모 데이터에 편향될 수 있는 모방 학습의 문제와 상대적으로 낮은 데이터 효율성을 갖는 강화 학습의 문제를 상호 보완적으로 해소할 수 있다. 또한, 제안 모델에서는 기존의 목표 기반 보상 함수들의 문제점을 해결하기 위해 설계된 새로운 경로 기반 보상 함수를 이용한다. 본 논문에서는 Matterport3D 시뮬레이션 환경과 R2R 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 제안 모델의 높은 성능을 입증하였다.

LVLN: 시각-언어 이동을 위한 랜드마크 기반의 심층 신경망 모델 (LVLN : A Landmark-Based Deep Neural Network Model for Vision-and-Language Navigation)

  • 황지수;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권9호
    • /
    • pp.379-390
    • /
    • 2019
  • 본 논문에서는 시각-언어 이동 문제를 위한 새로운 심층 신경망 모델인 LVLN을 제안한다. LVLN 모델에서는 자연어 지시의 언어적 특징과 입력 영상 전체의 시각적 특징들 외에, 자연어 지시에서 언급하는 주요 장소와 랜드마크 물체들을 입력 영상에서 탐지해내고 이 정보들을 추가적으로 이용한다. 또한 이 모델은 자연어 지시 내 각 개체와 영상 내 각 관심 영역, 그리고 영상에서 탐지된 개별 물체 및 장소 간의 서로 연관성을 높일 수 있도록 맥락 정보 기반의 주의 집중 메커니즘을 이용한다. 그뿐만 아니라, LVLN 모델은 에이전트의 목표 도달 성공율을 향상시키기 위해, 목표를 향한 실질적인 접근을 점검할 수 있는 진척 점검기 모듈도 포함하고 있다. Matterport3D 시뮬레이터와 Room-to-Room (R2R) 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 본 논문에서 제안하는 LVLN 모델의 높은 성능을 확인할 수 있었다.

심층 신경망을 이용한 자연어 지시의 실시간 시각적 접지 (Real-Time Visual Grounding for Natural Language Instructions with Deep Neural Network)

  • 황지수;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.487-490
    • /
    • 2019
  • 시각과 언어 기반의 이동(VLN)은 3차원 실내 환경에서 실시간 입력 영상과 자연어 지시들을 이해함으로써, 에이전트 스스로 목적지까지 이동해야 하는 인공지능 문제이다. 이 문제는 에이전트의 영상 및 자연어 이해 능력뿐만 아니라, 상황 추론과 행동 계획 능력도 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각과 언어 기반의 이동(VLN) 작업을 위한 새로운 심층 신경망 모델을 제안한다. 제안모델에서는 입력 영상에서 합성곱 신경망을 통해 추출하는 시각적 특징과 자연어 지시에서 순환 신경망을 통해 추출하는 언어적 특징 외에, 자연어 지시에서 언급하는 장소와 랜드마크 물체들을 영상에서 별도로 탐지해내고 이들을 추가적으로 행동 선택을 위한 특징들로 이용한다. 다양한 3차원 실내 환경들을 제공하는 Matterport3D 시뮬레이터와 Room-to-Room(R2R) 벤치마크 데이터 집합을 이용한 실험들을 통해, 본 논문에서 제안하는 모델의 높은 성능과 효과를 확인할 수 있었다.

시각-언어 이동 작업을 위한 장소 미리보기 메모리 (Lookahead Place Memory for Vision-Language Navigation Tasks)

  • 오선택;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.992-995
    • /
    • 2020
  • 시각-언어 이동 작업은 에이전트가 주어진 지시를 따라 특정 실내 공간 내에서 목적 위치로 이동하는 작업이다. 시각-언어 이동 작업의 특성상 자연어 지시 속에 등장하는 랜드마크인 장소 정보를 인지하는 것은 작업을 수행하는 데 큰 도움이 된다. 본 논문에서는 환경을 구성하는 주요 장소 정보를 저장하기 위한 장소 미리보기 메모리를 제안한다. 에이전트는 장소 미리보기 메모리에 저장된 장소 정보를 고려하여 작업을 수행하게 된다. 본 논문에서는 Matterport3D 시뮬레이션 환경에서의 실험을 통해 R2R 벤치마크 데이터 집합에서 가장 높은 성능을 보였다.

시각-언어 이동 에이전트를 위한 모방 학습과 강화 학습의 결합 (Combining Imitation Learning and Reinforcement Learning for Visual-Language Navigation Agents)

  • 오선택;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.559-562
    • /
    • 2020
  • 시각-언어 이동 문제는 시각 이해와 언어 이해 능력을 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각-언어 이동 에이전트를 위한 새로운 학습 모델을 제안한다. 이 모델은 데모 데이터에 기초한 모방 학습과 행동 보상에 기초한 강화 학습을 함께 결합한 복합 학습을 채택하고 있다. 따라서 이 모델은 데모 데이타에 편향될 수 있는 모방 학습의 문제와 상대적으로 낮은 데이터 효율성을 갖는 강화 학습의 문제를 상호 보완적으로 해소할 수 있다. 또한, 제안 모델은 서로 다른 두 학습 간에 발생 가능한 학습 불균형도 고려하여 손실 정규화를 포함하고 있다. 또, 제안 모델에서는 기존 연구들에서 사용되어온 목적지 기반 보상 함수의 문제점을 발견하고, 이를 해결하기 위해 설계된 새로은 최적 경로 기반 보상 함수를 이용한다. 본 논문에서는 Matterport3D 시뮬레이션 환경과 R2R 벤치마크 데이터 집합을 이용한 다양한 실들을 통해, 제안 모델의 높은 성능을 입증하였다.

멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동 (Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion)

  • 최정현;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.407-418
    • /
    • 2023
  • MultiOn(Multi-Object Goal Visual Navigation)은 에이전트가 미지의 실내 환경 내 임의의 위치에 놓인 다수의 목표 물체들을 미리 정해준 일정한 순서에 따라 찾아가야 하는 매우 어려운 시각적 탐색 이동 작업이다. MultiOn 작업을 위한 기존의 모델들은 행동 선택을 위해 시각적 외관 지도나 목표 지도와 같은 단일 맥락 지도만을 이용할 뿐, 다양한 멀티모달 맥락정보에 관한 종합적인 관점을 활용할 수 없다는 한계성을 가지고 있다. 이와 같은 한계성을 극복하기 위해, 본 논문에서는 MultiOn 작업을 위한 새로운 심층 신경망 기반의 에이전트 모델인 MCFMO(Multimodal Context Fusion for MultiOn tasks)를 제안한다. 제안 모델에서는 입력 영상의 시각적 외관 특징외에 환경 물체의 의미적 특징, 목표 물체 특징도 함께 포함한 멀티모달 맥락 지도를 행동 선택에 이용한다. 또한, 제안 모델은 점-단위 합성곱 신경망 모듈을 이용하여 3가지 서로 이질적인 맥락 특징들을 효과적으로 융합한다. 이 밖에도 제안 모델은 효율적인 이동 정책 학습을 유도하기 위해, 목표 물체의 관측 여부와 방향, 그리고 거리를 예측하는 보조 작업 학습 모듈을 추가로 채용한다. 본 논문에서는 Habitat-Matterport3D 시뮬레이션 환경과 장면 데이터 집합을 이용한 다양한 정량 및 정성 실험들을 통해, 제안 모델의 우수성을 확인하였다.