• Title/Summary/Keyword: Matrix tablet

Search Result 43, Processing Time 0.024 seconds

Formulation of Sustained-Release Tablets of Flurbiprofen (서방출성 플루르비프로펜 정제의 제제설계)

  • 이상철;박은석;지상철
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.185-192
    • /
    • 1995
  • Flurbiprofen, one of potent nonsteroidal antiinflammatory drugs, has several systemic side effects due to dose dumping effect following oral administration of its conventional solid dosage forms. To reduce these side effects and to sustain therapeutic concentration of the drug, matrix tablets of flurbiprofen were prepared and evaluated for sustained release from the tablets. The matrix tablets of flurbiprofen were prepared with Eudragit, Pluronic, (anhydrous) lactose and colloidal silicon dioxide employing two different preparation methods, wet granulation and direct compression. The dissolution rates of the tablets were evaluated using KP 2 method. Formulation factors that affected dissolution rates of flurbiprofen were the type and content of Eudragit, the type and content of Pluronic, and the tablet preparation method. Several formulations of the matrix tablets showed dissolution patterns close to the simulated profile using pharmacokinetic parameters of flurbiprofen.

  • PDF

Development of Fast Dissolving Tablet Containing Herb Extract by Freeze-Drying Technique

  • Kim, Jae-Il;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.3
    • /
    • pp.161-166
    • /
    • 2010
  • A fast dissolving tablet was developed using the freeze-drying technique. Hyeonggaeyeongyotang was selected as a model oriental medicine. Formulation and processing parameters were studied to obtain freeze-dried tablet with high drug loading, good palatability, and fast disintegration time. $Kollidon^{(R)}$ CLM served as both matrix former and taste masking agent. Ethanol used as co-solvent, decreased the disintegration time of tablet. Aspartame was employed to impart better taste. Drying condition was found to have a major effect in the morphology of the tablets. Freeze-drying process was optimized to decrease the processing time and improve the appearance of the tablets.

A Novel Drug Delivery Approach to Olanzapine Orally Dispersible Tablet (ODT) in the Phase of Schizophrenia and Its Pharmacokinetics

  • Kim, Hyun-Jo;Park, Jeong-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.5
    • /
    • pp.297-304
    • /
    • 2010
  • The present work focuses on preparation of olanzapine, orally dispersing tablets by direct compression method. Effect of super disintegrant crospovidone, disintegration time, drug content on in vitro release has been studied. A factorial design was employed in formulating a prompt dispersible tablet. The selected independent variables crospovidone and fmelt showed significant effect on dependent variables i.e. disintegration time and percent drug dissolved. Disintegration time and percent drug dissolved decreased with increase in the level of crospovidone. The similarity factor $f_2$ was found to be 97.48 for the developed formulation indicating the release was similar to that of the marketed formulation. Pharmacokinetics of olanzapine after single-dose oral administration of orally disintegrating tablet in normal volunteers were evaluated and the results showed that PK parameters (Cmax, Tmax, AUC) of the designed ODT matrix were similar to those of commercial product, Zyprexa Zydis$^{(R)}$ as a reference.

Analysis of Folate by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

  • Cha, Sang-Won;Kim, Hie-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1308-1312
    • /
    • 2003
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to observe folic acid and its derivatives such as tetrahydrofolate and 5-methyltetrahydrofolate in a vitamin tablet and in foods. Folic acid in a vitamin tablet was determined using angiotensin I as an internal reference. Tetrahydrofolic acid, 5-methyltetrahydrofolic acid, and an oxygenated folate were observed from a human blood sample using graphite plate. The results show that these mass spectrometric methods are useful for quickly obtaining a profile of folates.

Formulation Design of Sustained-Release Matrix Tablets Containing 4-Aminopyridine (유드라짓과 알긴산 나트륨 매트릭스를 이용한 4-Aminopyridine의 서방성 제제설계)

  • Kim, Jeong-Soo;Kim, Dong-Woo;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.453-460
    • /
    • 2005
  • 4-Aminopyridine (AP) is a potassium channel blocker used in the treatment of neurological disorders such as multiple sclerosis and Alzheimer disease. AP‘s window of therapeutic effect appears to correlate with its plasma halflife (3.5 hours). It demonstrates pH-dependent solubility because of a weakly basic drug. In addition, the resulting release from conventional matrix tablets decreases with increasing pH-milieu of the gastrointestinal tract. The aim of this study is to design sustained release matrix tablet containing AP, overcoming this problem. $Eudragit^{\circledR}$ L 100 (EuL) and sodium alginate were used in an effort to achieve pH independent drug release. The effect of sodium alginate and EuL on drug release from matrix tablet was investigated. The drug release behavior from the different tablets was analyzed by $t_{20%},\;t_{40%},\;t_{60%}$, The exponential diffusion coefficient n, kinetic constant K were calculated according to the Korsmeyer-Peppas equation. The drug release from matrix tablets prepared with sodium alginate was decreased with increasing the content of sodium alginate in pH 7.4 while there is no significant difference in pH 1.2. The exponent n values were determined to be approximately 0.5 and 0.8 respectively, in both pH 1.2 and 7.4. These values indicate diffusion-based anomalous mechanism and erosion-based anomalous mechanism, respectively. The drug release from sodium alginate matrix tablets prepared with solid dispersion of EuL containing drug showed a slow drug release in an acidic medium and a more fast drug release in phosphate medium, compared with sodium alginate matrix tablets prepared with physical mixture. These results may be attributed to the gel forming ability of sodium alginate and pH dependent solubility of EuL. Therefore, sustained-release AP matrix tablets using sodium alginate and EuL were successfully prepared.

Effect of Solvents on Physical Properties and Release Characteristics of Monolithic Hydroxypropylmethylcellulose Matrix Granules and Tablets

  • Cao Qing-Ri;Choi Yun-Woong;Cui Jing-Hao;Lee Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.493-501
    • /
    • 2005
  • Effect of solvents on physical characteristics and release characteristics of monolithic acetaminophen (APAP) hydroxypropylmethylcellulose (HPMC) matrix granules and tablets were examined. Various types and amounts of solvents were employed for granulation and coating. APAP and other excipients were mixed and were then wet-granulated in a high-speed mixer. The dried granules were then directly compressed and film-coated with low viscosity grade HPMC. As the amount of water increased, the size of granules also increased, showing more spherical and regular shape. However, manufacturing problems such as capping and lamination in tableting occurred when water was used alone as a granulating solvent. The physical properties of HPMC matrix granules were not affected by the batch size. The initial release rate as well as the amount of APAP dissolved had a tendency to decrease as the water level increased. Addition of nonaqueous solvent like ethanol to water resulted in good physical properties of granules. When compared to water/ethanol as a coating solvent, the release rate of film-coated HPMC matrix tablets was more sensitive to the conditions of coating and drying in methylene chloride/ethanol. Most of all, monolithic HPMC matrix tablet when granulated in ethanol/water showed dual release with about $50\%$ drug release immediately within few minutes followed by extended release. It was evident that the type and amount of solvents (mainly water and ethanol) were very important for wet granulation and film-coating of monolithic HPMC matrix tablet, because the plastic deforming and fragmenting properties of material were changed by the different strengths of the different solvents.

Preparation and Pharmacokinetic evaluation of Captopril Matrix Tablets with Polyethylene Oxide (폴리에틸렌옥시드를 이용한 캅토프릴 매트릭스 정제의 제조 및 약물동력학적 평가)

  • Jiang, Ge;Baek, Myoung-Ki;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.1
    • /
    • pp.7-12
    • /
    • 1999
  • The captopril matrix tablets composed of polyethylene oxide(PEO) was prepared and administered to beagle dogs. Captopril matrix tablets were prepared using direct compressed method and wet granulation compressed method with various ratios of drug to PEO. The diffusion rate of captopril matrix tablets followed on the Higuchi's diffusion model. With increasing hardness of captopril matrix tablets, release rate was decreased. Each formulation was evaluated by the area under the curve (AUC) and time course of plasma captopril concentration after oral administration to beagle dogs. The $AUC_{0-12}$ were $9.126\;{\mu}g\;h/ml$ and $6.417\;{\mu}g\;h/ml$ for the matrix tablets and conventional tablets, respectively. Therefore, the bioavailability of captopril matrix tablets was greater than that of commercial product. It is suggested that captopril matrix tablets using PEO is a useful sustained release formulation.

  • PDF

Development and Optimization of a Novel Sustained-release Tablet Formulation for Bupropion Hydrochloride using Box-Behnken Design

  • Cha, Kwang-Ho;Lee, Na-Young;Kim, Min-Soo;Kim, Jeong-Soo;Park, Hee-Jun;Park, Jun-Sung;Cho, Won-Kyung;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.5
    • /
    • pp.313-319
    • /
    • 2010
  • The objectives of this study were to evaluate the effect of formulation ingredients on the drug release and to optimize the novel sustained release matrix tablet formulations of bupropion hydrochloride. A three factor, three-level Box-Behnken design was used for the optimization procedure, with the amounts of PEO ($X_1$), citric acid ($X_2$) and Compritol 888 ATO ($X_3$) as the independent variables. The selected dependent variables were the cumulative percentage values of bupropion hydrochloride that had dissolved after 1, 4 and 8 hr. Various dissolution profiles of the drug from sustained release matrix tablets were obtained. Optimization was performed for $X_1$, $X_2$ and $X_3$ using the following target ranges; $30%{\leq}Y_1{\leq}45%$; $70{\leq}Y_2{\leq}85%$; $85%{\leq}Y_3{\leq}100%$. The optimized formulation for bupropion hydrochloride was achieved with 12.5% PEO ($X_1$), 2.5% citric acid ($X_2$) and 10% Compritol 888 ATO ($X_3$). The sustained release matrix tablets with the optimized formulation provided a release profile that was close to predicted values. In addition, the dissolution profiles of the sustained release matrix tablet with the optimized formulation were similar to those of the commercial product Wellbutrin$^{(R)}$ SR tablets ($f_2$=79.83).