• Title/Summary/Keyword: Matrix inequalities

Search Result 360, Processing Time 0.024 seconds

Observer Design for H- Fault Detection of Large Scale T-S Fuzzy Systems (대규모 T-S 퍼지 시스템의 H- 고장검출을 위한 관측기 설계)

  • Jee, Sung-Chul;Lee, Ho-Jae;Joo, Young-Hoon;Kim, Do-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • In this paper, we discuss a decentralized observer design problem for the fault detection in the large-scale continuous-time T-S (Takagi-Sugeno) fuzzy system. Since the fault detection residual is desired to be as sensitive as possible, on the fault, we use $\mathfrak{H}_-$ index performance criterion. Sufficient conditions for the existence of such a observer is presented in terms of linear matrix inequalities. Simulation results show the effectiveness of the proposed method.

Making Robust Stochastic Stabilizer for Uncertain T-S fuzzy Systems with Input Delay (입력지연을 갖는 불확실 T-S 퍼지 시스템의 강인 디지털 확률적 안정화기 설계)

  • 이호재;박진배;김정찬;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.321-324
    • /
    • 2003
  • This paper discusses a robust stochastic stabilization of uncertain Takagi-Sugeno (T-S) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretixzd T-S fuzzy system is represented by a uncertain discrete-time T-S fuzy system with jumping parameters. The robust stochastic stabilizibility of the uncertain jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs).

  • PDF

Robust Fuzzy Observer-Based Output-Feedback Controller for Networked Control Systems (네트워크 제어 시스템의 강인 퍼지 관측기 기반 출력궤환 제어기)

  • Jee, Sung-Chul;Lee, Ho-Jae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.464-469
    • /
    • 2009
  • This paper discusses a robust observer-based output-feedback stabilization of an uncertain Takagi-Sugeno (T-S) fuzzy system in a network. In the networked control system, the input delay occurs inevitably and it is expressed by the Markovian stochastic process. To design robust sampled-data observer-based output-feedback controller, we discretize the T-S fuzzy system and represent as a jump system. Stochastic robust stabilization condition is formulated in terms of linear matrix inequalities.

Mixed $H_{2}/H_{\infty}$ Controller Design for Descriptor Systems (디스크립터 시스템을 위한 혼합 $H_{2}/H_{\infty}$제어기의 설계)

  • Choe, Yeon-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.483-490
    • /
    • 2004
  • The descriptor system model has a high ability in representing dynamical systems. It can preserve physical parameters in the coefficient matrices, and describe the dynamic part, static part, and even the improper part of the system in the same form. The design of mixed $H_{2}/H_{\infty}$ controllers for linear time-invariant descriptor systems is considered in this paper. Firstly, an $H_2$ and $H_{\infty}$ synthesis problems fur a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, we show that the existence of a mixed $H_2/H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_2$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables.

Development of Robust Intelligent Digital Controller for Smart Space (스마트 스페이스 구축을 위한 강인 지능형 디지털 제어기 개발)

  • Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.60-65
    • /
    • 2008
  • In this paper, we concern the stability of smart space by using the robust digital controller. The proposed methodologies are based on the intelligent digital redesign (IDR). More precisely, we represent the nonlinear and uncertain analog system as the Takaki-Sugeno (T-S) fuzzy model. Then the IDR problem can be reduced to find the digital gains minimizing the norm distance between the closed-loop states of the analog and digital control. Its constructive conditions are expressed as the linear matrix inequalities (LMIs). At last, a numerical example, HVAC system, is demonstrated to visualize the feasibility of the proposed methodology.

Finite-horizon Tracking Control for Repetitive Systems with Uncertain Initial Condition (불확실한 초기치를 갖는 반복시스템에 대한 유한구간 추종제어)

  • Choi, Yun-Jong;Yun, Sung-Wook;Lee, Chang-Hee;Cho, Jae-Young;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.297-298
    • /
    • 2007
  • Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively and are widely spread in industrial fields. Hence, those systems have been of much interests by many researchers, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities. A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.

  • PDF

Design of Intelligent Controller with Time Delay for Internet-Based Remote Control (인터넷 기반 원격제어를 위한 임의의 시간지연을 갖는 지능형 제어기의 설계)

  • Joo, Young-Hoon;Kim, Jung-Chan;Lee, Oh-Jae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.293-299
    • /
    • 2003
  • This paper discusses a design of intelligent controller with time delay for Internet-based remote control. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The Takagi-Sugeno (T-S) fuzzy system with uncertain input delay is utilized to represent nonlinear plant. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The robust stochastic stabilizibility of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). An experimental results is provided to visualize the feasibility of the proposed method.

Robust Secure Transmit Design with Artificial Noise in the Presence of Multiple Eavesdroppers

  • Liu, Xiaochen;Gao, Yuanyuan;Sha, Nan;Zang, Guozhen;Wang, Shijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2204-2224
    • /
    • 2021
  • This paper studies secure wireless transmission from a multi-antenna transmitter to a single-antenna intended receiver overheard by multiple eavesdroppers with considering the imperfect channel state information (CSI) of wiretap channel. To enhance security of communication link, the artificial noise (AN) is generated at transmitter. We first design the robust joint optimal beamforming of secret signal and AN to minimize transmit power with constraints of security quality of service (QoS), i.e., minimum allowable signal-to-interference-and-noise ratio (SINR) at receiver and maximum tolerable SINR at eavesdroppers. The formulated design problem is shown to be nonconvex and we transfer it into linear matrix inequalities (LMIs). The semidefinite relaxation (SDR) technique is used and the approximated method is proved to solve the original problem exactly. To verify the robustness and tightness of proposed beamforming, we also provide a method to calculate the worst-case SINR at eavesdroppers for a designed transmit scheme using semidefinite programming (SDP). Additionally, the secrecy rate maximization is explored for fixed total transmit power. To tackle the nonconvexity of original formulation, we develop an iterative approach employing sequential parametric convex approximation (SPCA). The simulation results illustrate that the proposed robust transmit schemes can effectively improve the transmit performance.

Fuzzy Modeling and Stability Analysis of Wind Power System with Doubly-fed Induction Generator (이중여자 유도발전기 기반 풍력발전 시스템의 퍼지 모델링 및 안정도 해석)

  • Kim, Jin-Kyu;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.56-61
    • /
    • 2012
  • This paper propose the robust stability algorithm for controlling a variable speed wind power system which based on doubly-fed induction generator (DFIG). The control object in the wind power system enables the rotor to rotate without any physical contact by using magnetic force. Generally, the system dynamics of the wind power system has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving these problems, we propose the fuzzy modelling and robust control algorithm for wind power system. The sufficient conditions for robust controller are obtained in terms of solutions to linear matrix inequalities (LMIs). Simulation results for wind power system based on DFIG are demonstrated to visualize the feasibility of the proposed method.

H Control for Discrete-Time Fuzzy Markovian Jump Systems with State and Input Time Delays (상태 및 입력 시간지연을 갖는 이산 퍼지 마코비안 점프 시스템의 H 제어)

  • Lee, Kap-Rai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.28-35
    • /
    • 2012
  • This paper presents the method for $H_{\infty}$ fuzzy controller design of discrete-time fuzzy Markovian jump systems with state and input time delays. The Takagi and Sugeno fuzzy model is employed to represent a delayed nonlinear system that possesses Markovian jump parameters. A stochastic mode dependent Lyapunov function is employed to analyze the stability and $H_{\infty}$ disturbance attenuation performance of the fuzzy Markovian jump systems with state and input time delays. A sufficient condition for the existence of fuzzy $H_{\infty}$ controller is given in terms of matrix inequalities. Also numerical example is presented to illustrate the efficiency of the proposed design method.