• 제목/요약/키워드: Matrix Crack

검색결과 464건 처리시간 0.022초

Concrete stiffness matrices for membrane elements

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.599-608
    • /
    • 1997
  • The concrete stiffness matrices of membrane elements used in the finite element analysis of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane elements is first described by summarizing the constitutive laws of concrete and steel established for the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss model). These constitutive laws are then related to the concrete stiffness matrices of the two existing cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the existing models, a general model of the matrix is proposed. This general matrix includes two Poisson ratios which are not clearly understood at present. It is proposed that all five material properties in the general matrix should be established by new biaxial tests of panels using proportional loading and strain-control procedures.

Effects of Matrix Ductility on the Shear Performance of Precast Reinforced HPFRCC Coupling Beams

  • Yun Hyun-Do;Kim Sun-Woo;Jeon Esther;Park Wan Shin
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.53-56
    • /
    • 2005
  • This paper investigates the effect of ductile deformation behavior of high performance hybrid fiber-reinforced cement composites (HPHFRCCs) on the shear behavior of coupling beams to lateral load reversals. The matrix ductility and the reinforcement layout were the main variables of the tests. Three short coupling beams with two different reinforcement arrangements and matrixes were tested. They were subjected to cyclic loading by a suitable experimental setup. All specimens were characterized by a shear span-depth ratio of 1.0. The reinforcement layouts consisted of a classical scheme and diagonal scheme without confining ties. The effects of matrix ductility on deflections, strains, crack widths, crack patterns, failure modes, and ultimate shear load of coupling beams have been examined. The combination of a ductile cementitious matrix and steel reinforcement is found to result in improved energy dissipation capacity, simplification of reinforcement details, and damage-tolerant inelastic deformation behavior. Test results showed that the HPFRCC coupling beams behaved better than normal reinforced concrete control beams. These results were produced by HPHFRCC's tensile deformation capacity, damage tolerance and tensile strength.

  • PDF

웨이블릿 변환을 이용한 복합재 모재균열의 신호특성 분석 (Study of Signal Characteristics of Matrix Cracks in Composites Using Wavelet Transform)

  • 방형준;김대현;강동훈;홍창선;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.151-154
    • /
    • 2002
  • The objective of this study is to find the change of signal characteristics of matrix cracks due to the different specimen shapes. As the concept of the smart structure, monitoring of acoustic emission (AE) can be applied to inspect the fracture of the structures in operating condition using built-in sensors. To understand the characteristics of matrix crack signals, we performed tensile tests by changing the thickness and width of the specimens. This paper describes the implementation of time-frequency analysis such as wavelet transform (WT) fur the quantitative evaluation of fracture signals. The experimental result shows the distinctive signal features in frequency domain due to the different specimen shapes.

  • PDF

콜로이드 혼합법 및 Sol-Gel 법에 의해 제조한 SiC 휘스커 강화 LAS 기지 복합체의 특성 (Characteristics of SiC Whisker-Reinforced LAS Matrix Composites Fabricated by the Mixed Colloidal Route and the Sol-Gel Process)

  • 김광수;장현명;정창주;백용기
    • 한국세라믹학회지
    • /
    • 제28권12호
    • /
    • pp.1012-1018
    • /
    • 1991
  • SiC whisker-reinforced LAS matrix composites were developed by a mixed colloidal processing route. An optimization of processing conditions was made using the zeta potential data of silica, boehmite, and SiC whisker dispersions. Similarly, the SiC whisker-reinforced composites were also fabricated by the conventional sol-gel process using the hydrolysis-condensation reaction of relevant metal alkoxides. The composites fabricated by the mixed colloidal processing route were characterized by a uniform spatial distribution of SiC whisker throughout the matrix. The fracture toughness increased from 1.3 MPa.m1/2 for the LAS specimen to 5.0 Mpa.m1/2 for the hot-pressed composite (95$0^{\circ}C$ and 20 MPa for 20 min) containing 20 wt% SiC whisker. The increase in fracture toughness appears to result mainly from the crack deflection and the crack bridging by whiskers with some additional toughenings from the whisker pullout and the matrix prestressing mechanisms.

  • PDF

Breathing Crack이 있는 회전하는 복합재료 보의 동적 특성에 관한 연구 (Dynamic Characteristics of Rotating Composite Cantilever Beam with a Breathing Crack)

  • 김성수;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.527-533
    • /
    • 2000
  • It is investigated that the characteristics of rotating cantilevered composite beam with a breathing crack. In the present study, the crack is modeled as a breathing crack which opens and closes with the motion of the unidirectional graphite-fiber reinforced polyimide beam. For the finite element analysis, the cracked element is modelled by the local flexibility matrix calculated on the basis of fracture mechanics using Castiligano theorem. Rotating beam is considered only transverse bending motion so that the element includes two degrees of freedom per node such as the transverse deflection and slope. The time history and frequency response function of the beam with a breathing crack are studied by Newmark direct time integration method and FFT(Fast Fourier Transform)simulation. Effects of various parameters such as the crack depths, crack locations, ply angles, volume fraction ratios, and rotating speeds of the beam are also studied. Numerical results indicate that it is more reliable to be modelled as a breathing crack than an open crack.

  • PDF

토양과 지하수를 보호하기 위한 구조물에 있어서 강섬유콘크리트의 특성 (Behavior of durable SFRC Structures for the Protection of Underground Environment)

  • 강보순;심형섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.329-334
    • /
    • 2001
  • In this paper, the crack properties of steel fiber reinforced concrete (SFRC) structures for environment by experimental and analytical methods are discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to break crack, SFRC has better crack properties than that of reinforced concrete (RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete.

  • PDF

소컷 및 원공 주위의 피로균열 형태변화와 층간분리거동 (I) - 아라미드섬유 강화 금속적층재의 경우 - (Fatigue Crack and Delamination Behavior in the Composite Material Containing n Saw-cut and Circular Hole (I) - Aramid Fiber Reinforced Metal Laminates -)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.58-65
    • /
    • 2003
  • The aramid fiber reinforced metal laminates(AFRMLs) used for the wing part fair flight suffer the cyclic bending moment of variable amplitude during service. The fatigue crack propagation and delamination behavior in AFRMLs containing a saw-cut and circular hole was investigated using the average stress criterion(ASC) model. Mechanical tests were carried out using the cyclic bending moment of 4.9 N . m and delamination was observed by ultrasonic C-scan images. In case of AFRMLs containing a saw-cut fatigue crack propagated in aluminum matrix, inducing delamination. However, in case of AFRMLs containing a circular hole, delamination formed with two types under cyclic bending moment of 4.9 N . m. First, delamination formed along the fatigue crack in aluminum matrix. Second, delamination formed without any fatigue crack around the circular hole. Therefore, delamination was formed depending on the stress distribution near the circular hole.

판재에 있는 구멍 또는 이종재료 사이에서의 크랙 전파 거동 (A Behavior of the Crack Propagation between Holes or Another Materials on the Panel)

  • 조재웅;한문식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.264-271
    • /
    • 2005
  • This study investigates the behavior of fatigue crack propagating between holes or holes filled with another materials. When holes or the holes bonded with another materials exist near center crack symmetrically, crack propagation rate is influenced by the bonding force of brazing part and the elastic modulus ratio of another material to matrix. It is experimentally and analytically confirmed that the center crack stops when its tip reaches near the center line of the holes and a small crack is initiated from the boundaries of holes or the holes filled with another materials and it propagates to final fracture. The mechanical behaviors of center crack near another materials are also investigated.

  • PDF

판재에 있는 구멍 또는 이종재료 사이에서의 크랙 전파 거동 (A Behavior of the Crack Propagation between Holes or Another Materials on the Panel)

  • 한문식;조재웅
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.74-82
    • /
    • 2005
  • This study investigates the behavior of fatigue crack propagating between holes or holes filled with another materials. When holes or the holes bonded with another materials exist near center crack symmetrically, crack propagation rate is influenced by the bonding force of brazing part and the elastic modulus ratio of another material to matrix. It is experimentally and analytically confirmed that the center crack stops when its tip reaches near the center line of the holes and a small crack is initiated from the boundaries of holes or the holes filled with another materials and it propagates to final fracture. The mechanical behaviors of center crack near another materials are also investigated.

용접 계면균열의 크리프 균열성장 거동에 관한 연구 (A Study on Creep Crack Growth Behavior of Weld Interface Crack)

  • 윤기봉;김광웅;정용근
    • Journal of Welding and Joining
    • /
    • 제16권4호
    • /
    • pp.83-91
    • /
    • 1998
  • Cracking problems which high temperature plant components suffer during long-term service, occur very often at welded locations. The crack occurs due to accumulated creep damage near fusion line or at heat affected zone (HAZ). However, most of the studies on creep crack growth behavior have been performed with matrix metal not wit welded metal due to the difficulty of interpreting the test results. In this study, creep crack growth rates were measured with C(T) specimens whose cracks were formed along the fusion line or HAZ. The measured crack growth rates were characterized by {TEX}$C_{t}${/TEX}-parameter derived for elastic-primary-secondary creeping material. Since contribution of primary creep was significant for the tested 1Cr-0.5Mo steel, its effect was carefully studied. Effects of crack tip plasticity and material aging were also discussed.

  • PDF