• Title/Summary/Keyword: Matrix Crack

Search Result 464, Processing Time 0.025 seconds

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.296-303
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore for its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

Determination of mortar strength using stone dust as a partially replaced material for cement and sand

  • Muhit, Imrose B.;Raihan, Muhammad T.;Nuruzzaman, Md.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.249-259
    • /
    • 2014
  • Mortar is a masonry product which is matrix of concrete. It consists of binder and fine aggregate and moreover, it is an essential associate in any reinforced structural construction. The strength of mortar is a special concern to the engineer because mortar is responsible to give protection in the outer part of the structure as well as at a brick joint in masonry wall system. The purpose of this research is to investigate the compressive strength and tensile strength of mortar, which are important mechanical properties, by replacing the cement and sand by stone dust. Moreover, to minimize the increasing demand of cement and sand, checking of appropriateness of stone dust as a construction material is necessary to ensure both solid waste minimization and recovery by exchanging stone dust with cement and sand. Stone dust passing by No. 200 sieve, is used as cement replacing material and retained by No. 100 sieve is used for sand replacement. Sand was replaced by stone dust of 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50% by weight of sand while cement was replaced by stone dust of 3%, 5%, and 7% by weight of cement. Test result indicates that, compressive strength of specimen mix with 35% of sand replacing stone dust and 3% of cement replacing stone dust increases 21.33% and 22.76% respectively than the normal mortar specimen at 7 and 28 days while for tensile it increases up to 13.47%. At the end, optimum dose was selected and crack analysis as well as discussion also included.

Synergistic Effect in Mechanical Properties of Sheet Molding Compound via Simultaneous Incorporation of Glass Fiber and Glass Bubble Fillers (유리섬유와 유리버블에 의한 Sheet Molding Compound 강도의 시너지 효과)

  • Noh, Ye Ji;Lee, Yong Cheol;Hwang, Taewon
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.8-11
    • /
    • 2018
  • Sheet molding compound (SMC) is one of the most economical fiber reinforced composite fabrication processing for automotive applications. In this study, we studied the optimum formulation for the production of SMC which shows low specific gravity without lowering the mechanical properties by using glass bubble (GB) which is a low specific gravity filler and glass fiber (GF) as a reinforcing material. The tensile strength increased with the increase of the GF in the SMC, and the specific gravity decreased with the increase of the GB. The synergistic effect of improving the mechanical properties as the specific gravity is lowered is found in the optimum formulation. The synergy effect was confirmed by the internal structure analysis that the dispersion effect of the crack propagation of the GB and the improvement of the binding force between the fiber and the matrix due to the incorporation of the GB.

On-Line Monitoring of Microscopic Fracture Behavior of Concrete Using Acoustic Emission (음향방출을 이용한 콘크리트 부재의 미시적 파괴특성의 온라인 모니터링)

  • Lee, Joon-Hyun;Lee, Jin-Kyung;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 1999
  • Since concrete is an inhomogeneous material consisting of larger aggregates and sand embedded in a cement paste matrix, it relatively shows a complex failure mechanism. In order to assure the reliability of concrete structure. microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. In this study, an acoustic emission(AE) technique has been used to clarify microscopic failure mechanism and their corresponding AE signal characteristics of concrete under three-point bending test. In addition 2-dimensional AE source location has been performed to monitor the progress of an internal damage and the successive crack growth behavior during the loading. The relationship between AE signal characteristics and microscopic fracture mechanism is discussed.

  • PDF

A Study on the Impact Damage and Residual Strength of CFRP Composite Laminates under Low Temperature (저온하에서 CFRP 적층재의 충격 손상과 잔류 강도 -저/고온하에서 CFRP 적층재의 충격 손상을 중심으로 -)

  • Yang, I.Y.;Jung, J.A.;Cha, C.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • In this paper, the effects of temperature change (low and high temperature) on the impact damages of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CF/epoxy orthotropic laminated plates, which have two-interfaces $[0^{\circ}\;_6/90^{\circ}\;_6]s$ and $[0^{\circ}\;_4/90^{\circ}\;_4]s$. And CF/PEEK orthotropic laminated plates, which have two-interfaces $[0^{\circ}\;_4/90^{\circ}\;_4]s$. And, this study aims experimentally to present the interrelations between the impact energy vs. impact damages (i.e. delamination area and matrix crack) of CFRP laminates (CF/epoxy, CF/PEEK) subjected to FOD(foreign object damage) under low and high temperatures. A steel ball launched by the air gun collides against CFRP laminates to generate impact damages.

  • PDF

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture (CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가)

  • Choi, Se-Jin;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.350-352
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore fur its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

  • PDF

Microstructures and Tensile Properties in Arc Brazed Joints of Ferritic Stainless Steel using Cu-8.6%Al Insert Metal (Cu-8.6wt%Al 삽입금속을 사용한 페라이트계 스테인리스강의 아크 브레이징 접합부의 미세조직과 인장성질)

  • Cho, Young-Ho;Chung, Chang-Eun;Kang, Myoung-Chang;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.85-92
    • /
    • 2011
  • Microstructures and tensile properties in arc brazed joints of ferritic stainless steel, 429EM using Cu-8.6%Al insert metal was investigated as function of brazing current. The brazing speed was fixed at 800mm/min and brazing current varied in the range of 80A to 120A. The initial phase of filler metal was Cu single phase. However, the insert metal structures of brazed joints was composed of Cu matrix and intermetallic compound such as ${\gamma}_1(Al_4Cu_9)$, and flower-shape Fe-Cr. The fraction of ${\gamma}_1(Al_4Cu_9)$ phase was similar with 80A and 100A brazing currents while that of brazed with 120A was decreased. On the other hand, the fraction of Fe-Cr phase increased with increasing of the brazing current. A reaction layer at the base metal/insert metal interface was observed and this reaction layer was thickened with increasing of the brazing current. In the brazed joints with the current lower than 100A, crack was grew up along the interface which was perpendicular to the tensile stress, and then, passed through the insert metal in the final stage of fracture. As the brazing current increased to 120A, fracture occurred at the base metal.

Tensile Stress-Strain Relation of ECC (Engineered Cementitious Composite) Accounting for Bridging Curve (실제 균열면응력-변위 곡선을 고려한 ECC의 1축 인장거동 관계)

  • Kim, Jeong-Su;Lee, Bang Yeon;Kwon, Seong-Hee;Kim, Jin-Keun;Kim, Yun Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.933-936
    • /
    • 2008
  • An engineered cementitious composite (Engineered Cementitious Composite) had been developed in previous study. Theoretical prediction of the tensile stress-strain relation of ECC is important in providing the material constitutive relation necessary for designing structural members. But, few studies have been reported with regard to predicting the tensile stress-strain relation of ECC. Prediction of the tensile stress-strain relation of ECC accounting for actual bridging curve, such as fiber dispersion is needed. The present study extends the work as developed by Kanda et al., by modeling the bridging curve, accounting for fiber dispersion, the degree of matrix spalling, and fiber rupture to predict the tensile stress-strain relation of ECC. The role of material variation in the bridging curve, such as number of effective fiber actually involved in the bridging capacity and how it affects the multiple cracking process is discussed. The approach for formulating the tensile stress-strain relation is discussed next, where the procedure for obtaining the necessary parameters, such as the crack spacing, is presented. Finally, the predicted stress-strain relation will be validated with experimental tests results.

  • PDF

A Study on Composite Blade Analysis Library Development through Dimension Reduction/Recovery and Calculating Energy Release Rate (단면의 차원축소/복원해석과 에너지 해방률 계산을 위한 복합재 블레이드 해석 라이브러리 개발에 대한 연구)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • In this paper, numerical results of sectional analysis, stress recovery and energy release rate were compared with the results of VABS, 3-D FEM through the blade analysis library. The result of stress recovery analysis for one-dimensional model including the stiffness matrix is compared with stress results of three-dimensional FEM. We discuss the configuration of the blade analysis library and compare verifications of numerical analysis results of VABS. Blade analysis library through dimensional reduction and stress recovery is intended to be utilized in conjunction with pre- and post-processing of the analysis program of the composite blade, high-altitude uav's wing, wind blades and tilt rotor blade.