• Title/Summary/Keyword: Matlab model

Search Result 1,030, Processing Time 0.031 seconds

3-D Topology Optimization by a Nodal Density Method Based on a SIMP Algorithm (SIMP 기반 절점밀도법에 의한 3 차원 위상최적화)

  • Kim, Cheol;Fang, Nan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.412-417
    • /
    • 2008
  • In a traditional topology optimization method, material properties are usually distributed by finite element density and visualized by a gray level image. The distribution method based on element density is adequate for a great mass of 2-D topology optimization problems. However, when it is used for 3-D topology optimization, it is always difficult to obtain a smooth model representation, and easily appears a virtualconnect phenomenon especially in a low-density domain. The 3-D structural topology optimization method has been developed using the node density instead of the element density that is based on SIMP (solid isotropic microstructure with penalization) algorithm. A computer code based on Matlab was written to validate the proposed method. When it was compared to the element density as design variable, this method could get a more uniform density distribution. To show the usefulness of this method, several typical examples of structure topology optimization are presented.

  • PDF

A Study on the Effect of a Stabilization Error of the Line-Of-Sight Stabilization System according to the Isolation Properties (방진성능에 따른 시선 안정화 장치의 안정화오차 영향성 검토)

  • Park, Jae-Hoon;Park, Jong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.186-190
    • /
    • 2011
  • The Line-Of-Sight stabilization system is designed to minimize the error of Line-Of-Sight under the disturbing circumstances. In order to control this system more accurately and reduce the level of the disturbance, adding an isolator is mostly considered. However, it is difficult to predict the exact the behavior of the isolator and the effect of a stabilization Error. Therefore, the simulation model of the control system using co-simulation with Adams and matlab simulink is presented and the effects of the isolation properties are reviewed.

  • PDF

Measurement of Dynamic Viscoelasticity of In-vivo Human Skin (In-vivo 피부의 동적 점탄성 측정)

  • Kwon H.J.;Kwon Y.H.;Jeong C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.525-526
    • /
    • 2006
  • The products designed by human sensibility and ergonomics are given good impression. Especially the touch feeling on the human skin is very useful sensibility for quality of products. Elasticity and viscosity of human skin is very important element in product design based on ergonomics. In this paper, we describe a sophisticated method for measurement of dynamic viscoelasticity characteristics of human skin. For this measurement, we developed a measurement system assembled with load cell, actuator, amplifier and data acquisition system. The $MATLAB^{TM}$ is used to analyze the data and fit a approximation curves.

  • PDF

A Study on The Vibration Mode of Suspension for AGV - A Case of Gravity Acceleration is 5G - (AGV 용 서스팬션의 진동 모드에 관한 연구 -중력 가속도가 5G인 경우-)

  • 주만식;김민주;이승수;최영철;추정근;김중완;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.90-95
    • /
    • 2000
  • This study is to choose the most proper model for AGV throughout simulation of behavior of suspension to reduce trial and error because there is no AGV treating heavy weight at harbor loading and unloading at home. Therefore, we estimate the vibration modes of the various suspension applied to AGV, which is over 75 ton included the weight of two containers on 5G using the Matlab, one of the simulation programs

  • PDF

A Study on Multi Pass Transmission System for a Flywheel Hybrid Vehicle (플라이휘일 하이브리드 차량의 다경로 동력전달장치 연구)

  • 송한림;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.106-116
    • /
    • 1997
  • In this paper, using MATLAB SIMULINK, a generalized design methodology was suggested for multi pass transmission(MPT) by classifying the vehicle power train as prime mover, MPT and vehicle dynamics. This approach enables a designer to investigate the influence of each transmission component by simple combination of system components without changes of overall program. Using the design methodology, a MPT consisting of CVT, 2, clutches and reduction gears was designed for a braking energy regenerative flywheel hybrid vehicle. The CVT is essential in order to connect the engine and flywheel speed with the vehicle speed. For the purpose of smooth clutch operation, control algorithm was suggested by introducing dead zone for the clutch engagement. Using the SIMULINK model, performance of the flywheel hybrid vehicle with MPT was investigated. It was observed from the simulation results that the MPT vehicle showed better fuel economy, 47% than that of AT vehicle, 27% than that of CVT vehicle for ECE-15 driving cycle. Especially destinct fuel efficiency improvement was obtained for city driving cycle requiring more frequent stop and start.

  • PDF

GENERALIZED THERMO ELASTIC WAVES IN A CYLINDRICAL PANEL EMBEDDED ON ELASTIC MEDIUM

  • Ponnusamy, P.;Selvamani, R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2013
  • In this paper the three dimensional wave propagation in a homogeneous isotropic thermo elastic cylindrical panel embedded in an elastic medium (Winkler model) is investigated in the context of the L-S (Lord-Shulman) theory of generalized thermo elasticity. The analysis is carried out by introducing three displacement functions so that the equations of motion are uncoupled and simplified. A Bessel function solution with complex arguments is then directly used for the case of complex Eigen values. This type of study is important for design of structures in atomic reactors, steam turbines, wave loading on submarine, the impact loading due to superfast train and jets and other devices operating at elevated temperature. In order to illustrate theoretical development, numerical solutions are obtained and presented graphically for a zinc material with the support of MATLAB.

Optimal design of an automatic walking robot based on Jansen's Mechanism (얀센 메커니즘을 이용한 자동주행 보행 로봇의 최적 설계)

  • Kim, Dong-Chan;Kim, Mu-Hwan;Lee, Min-Su;Park, Je-Yeol;Jo, Seong-Uk
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.540-546
    • /
    • 2017
  • Bipedal robots tend to have greater mobility than conventional treaded or wheeled robots yet they are commonly complicated by instabilities in balance. This paper presents a bipedal robot based upon Jansen's locomotive mechanism which addresses these challenges in stability and efficiency. In order to achieve a functioning robot, we considered a multitude of variables in its motion including, the Ground Score, Drag Score, step size, foot lift, stride, and instantaneous speed of the Jansen mechanism. Matlab and Jansen Opt solver were used to optimize the legs of the robot. A trial and error experimental method was used to determine the best combination of link lengths, and m.Sketch was used to model our results. Finally, we drew the entirety of the robot's figure by using the Edison design.

  • PDF

Design of an Acoustic band Interpolator for Underwater Sensor Nodes (수중 센서 노드를 위한 음파 대역 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.93-98
    • /
    • 2020
  • Research on underwater sensor networks is increasing due to such reasons as marine resource management, maritime disaster prediction and military protection. Many underwater sensor networks performs wireless communication using an acoustic sound wave band signal having a relatively low frequency. So the digital part of their modem can take charge of carrier band signal processing. To enable this, the sampling rate of the baseband band signal should be increased to a sampling rate at which carrier band signal processing is possible. In this paper, we designed a sampling rate increasing circuit based on a CIC interpolator for underwater sensor nodes. The CIC interpolator has a simple circuit structure. However, since the CIC interpolator has a large attenuation of the pass band and a wide transition band, an inverse sinc LPF is added to compensate for frequency response of the CIC interpolator. The proposed interpolator was verified in time domain and frequency domain using ModelSim and Matlab.

Path Tracking Controller Design and Simulation for Korean Lunar Lander Demonstrator

  • Yang, Sungwook;Son, Jongjun;Lee, Sangchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.102-109
    • /
    • 2015
  • In Korea, Lunar exploration program has been prepared with the aim of launching in the 2020's. As a part of it, a lunar lander demonstrator was developed, which was the model for verifying the system such as structure, propulsion, and control system, before launching into the deep space. This paper deals with the path tracking performance of the lunar lander demonstrator with respect to the thruster controller based on Pulse Width Pulse Frequency Modulator (PWPFM) and Pulse Width Modulator (PWM). First, we derived equations of motion, considering the allocation of the thrusters, and designed the path tracking controller based on Euler angle. The signal generated from the path tracking controller is continuous, so PWPFM and PWM modulator are adopted for generating ON/OFF signal. Finally, MATLAB simulation is performed for evaluating the path tracking ability. We compared the path tracking performances of PWPFM and PWM based thrust controller, using performance measures such as the total impulse and the position error with respect to the desired path.

Design of Rotor Resistance Estimator for Sensorless Vector Control of Induction Motor (유도전동기의 센서리스 벡터제어를 위한 회전자 저항 추정기의 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Gong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.113-115
    • /
    • 2001
  • This paper presents the rotor parameter identification based on the MRAS theory and the speed estimation using ANN for the sensorless vector control of induction motor. The motor speed is estimated using ANN model which contains the rotor parameter. And the rotor parameter is identified using MRAS scheme which contains the rotor speed. The rotor speed estimate converges to its actual value as the rotor parameter error converges toward the zero. The simulation using Matlab/Simulink is performed to show the effectiveness of the proposed scheme.

  • PDF