• Title/Summary/Keyword: Matlab model

Search Result 1,030, Processing Time 0.025 seconds

The Appoication of $H_{infty}$ Controller to A Magnetic Levitation System ($H_{infty}$ 제어기의 자기부상 시스템에의 적용)

  • Kim, Jong-Moon;Kim, Seog-Joo;Park, Min-Kook;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.494-502
    • /
    • 2002
  • In this paper, a suspension control of a magnetic levitation(MagLev) system with flexible rail is designed and presented. The numerical modelling for the electromagnetic system to be controlled as a target plant is carried out. And dome kinds of the hardware system including CPU board, AD board, DA board, sensors, and switching power amplifier are described. Using the derived model, the stabilizing controllers, such as PID and $H_{\infty}$ controller, for the MagLev system are designed using the MATLAB toolbox. The designed controllers are validated by some experimental results as well as numerical simulations. So it is shown that $H_{\infty}$ controller can give the better performance for the plant with flexible modes than PID controller.

A Study on the Position Control of a Ball-Balancing System (볼 밸런싱 시스템의 위치 제어에 관한 연구)

  • Choi, Soo-Young;Choi, Goon-Ho;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.712-714
    • /
    • 1999
  • Ball-balancing control systems are ideal to demonstrate the design and hardware implementation Procedures of optimal controllers based on modern control theory. This paper presents the design of an $H_2$ optimal controller based on the generalized plant model of the ball-balancing system. The problem of balancing a metal ball on the midpoint of a beam is ultimately related to a regulating problem. So, the designed controller is correspond to this problem. The controller was experimented by DSP(digital signal processing) equipments and simulated by MATLAB. The performance of controller was verified through the experiments.

  • PDF

Graphical Modeling for Operational Scheme of Current Differential Relay for Transmission Line Protection (송전선 보호용 차동전류 계전기의 동작원리에 대한 그래픽 표현)

  • Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1407-1409
    • /
    • 1999
  • Distance relay is being used for transmission line protection. Recently, current differential relay is used with high reliability in power system. This kind of relay is reported that it has a reliable detection ability, even so high impedance faults take place in transmission line. Therefore it is expected to use and expand widely in many utilities. Tripping of the relay is decided according to the difference between differential and restraint current. However the tripping criterion can be changed by the manufacturers. This paper presents an operational scheme of current differential relay for transmission line protection with graphical model. It is developed for educational purpose for students interesting in power system and protection engineer in utility. MATLAB is used to establish the models.

  • PDF

Reduction of Components in New Family of Diode Clamp Multilevel Inverter Ordeal to Induction Motor

  • Angamuthu, Rathinam;Thangavelu, Karthikeyan;Kannan, Ramani
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.58-69
    • /
    • 2016
  • This paper describes the design and implementation of a new diode clamped multilevel inverter for variable frequency drive. The diode clamp multilevel inverter has been widely used for low power, high voltage applications due to its superior performance. However, it has some limitations such as increased number of switching devices and complex PWM control. In this paper, a new topology is proposed. New topology requires only (N-1) switching devices and (N-3) clamping diodes compared to existing topology. A modified APO-PWM control method is used to generate gate pulses for inverter. The proposed inverter topology is coupled with single phase induction motor and its performance is tested by MATLAB simulation. Finally, a prototype model has built and its performance is tested with single phase variable frequency drive.

Design of an improved PID controller for DC/DC boost pourer converter with inductor resistance under load variation (부하변동과 인덕터 저항을 고려한 DC/DC 승압 컨버터의 개선된 PID 제어기 설계)

  • Kim, In-Hyuk;Jeong, Goo-Jong;Son, Young-Ik
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.85-87
    • /
    • 2009
  • This paper presents a new PID controller for a DC/DC boost converter model that has a parasitic inductor resistance. In order to maintain the robust output regulation property under load variations the proposed controller is designed by using an additional state variable developed via a parallel-damped passivity-based control approach. Simulation results using Matlab/Simulink SimPowerSystems compare the performances of the proposed controller with a conventional PI controller for reference step changes and load uncertainties.

  • PDF

Vibration Control and Steering Performance Evaluation of Railway Vehicle Using Magnetorheological Damper (MR댐퍼를 이용한 철도 차량의 진동제어 및 조향성능 고찰)

  • Ha, Sung-Hoon;Choi, Seung-Bok;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.524-532
    • /
    • 2008
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative(PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.

A Study on Vibration Mode of Suspension for AGV When The Container is Carried -A Case of Gravity Acceleration is G- (컨테이너 적재시 AGV 용 서프펜션의 진동 모드에 관한 연구 - 중력 가속도가 G인 경우 -)

  • 주만식;김민주;이승수;최영철;추정근;박정보;김중완;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.255-260
    • /
    • 2000
  • This study is to choose the most proper model for AGV throughout simulation of behavior of suspension to reduce trial and error because there is no AGV treating heavy weight at harbor loading and unloading at home. Therefore, we estimate the vibration modes of the various suspensions applied to AGV, which is over 75 ton included the weight of two containers using the Matlab, one of the simulation programs.

  • PDF

Identification of Connections of Vibration Systems Using Substructural Sensitivity Analysis (부분구조 기반 민감도 해석을 이용한 진동시스템의 연결부 특성 추정)

  • 서세영;김도연;김찬묵;이두호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.786-792
    • /
    • 2001
  • In this paper, the identification of connections for a vibration system has been presented using FRF-based substructural sensitivity analysis. The substructural design sensitivity formula is derived and plugged into a commercial optimization program, MATLAB, to identify connection stiffness of an air-conditioner system of passenger car. The air-conditioner system, composed of a compressor and a bracket is analyzed by using FRF-based substructural(FBS) method. To obtain the FRFs, FE model is built for the bracket, and the impact hammer test is performed for the compressor. Obtained FRFs are combined to calculate the reaction force at the connection point and the system response. Connection element properties are determined by minimizing the difference between a target FRF and calculated one. It is shown that the proposed identification method is effective even for a real problem.

  • PDF

Stability Analysis of Railway Vehicle Featuring MR Damper (MR 댐퍼를 적용한 철도차량의 안정성 해석)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Yoo, Won-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.957-962
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological (MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect. Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

  • PDF

Reliability based analysis of torsional divergence of long span suspension bridges

  • Cheng, Jin;Li, Q.S.
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.121-132
    • /
    • 2009
  • A systematic reliability evaluation approach for torsional divergence analysis of long span suspension bridges is proposed, consisting of the first order reliability method and a simplified torsional divergence analysis method. The proposed method was implemented in the deterministic torsional divergence analysis program SIMTDB through a new strategy involving interfacing the proposed method with SIMTDB via a freely available MATLAB software tool (FERUM). A numerical example involving a detailed computational model of a long span suspension bridge with a main span of 888 m is presented to demonstrate the applicability and merits of the proposed method and the associated software strategy. Finally, the most influential random variables on the reliability of long span suspension bridges against torsional divergence failure are identified by a sensitivity analysis.