• Title/Summary/Keyword: Matlab model

Search Result 1,030, Processing Time 0.028 seconds

A Study on the Flux Estimation Simulator Application for the Induction Motor Speed Control (속도제어를 위한 유도전동기 자속추정 시뮬레이터 적용에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Gi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1289-1301
    • /
    • 2011
  • In this paper, flux estimation method at the Induction motor is applied to stability flux estimate of possibility in overall speed domain. angle operation has voltage and current and speed information using the Induction motor direct control method. Induction motor direct control is material to flux information. Exact flux estimation method to using current model flux estimator of low-speed domain and voltage model flux estimator of high-speed domain. Speed and current and flux controller using PI controller. And error of integral requital for add to Anti-Windup PI controller. Verified to performance of Current model Flux controller and voltage model flux controller using Matlab / Simulink. Analysis has parameter influence of direct vector control and indirect vector control at the Induction motor vector control. So, verified to minute control. Analyzed to simulation result and proof to validity of presented algorithm.

Model Based Control System Design of Two Wheeled Inverted Pendulum Robot (이륜 도립진자 로봇의 모델 기반 제어 시스템 설계)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.162-172
    • /
    • 2011
  • This paper proposes embedded System of two wheeled inverted pendulum robot designed by model based design method, using MATLAB/SIMULINK and LEGO NXT Mindstorms. At first, stability and performance of controller is verified through modeling and simulation. After that direct conversion from simulation model to C code is carried and effectiveness of controller is experimentally verified. Two wheeled inverted pendulum robot has basic function about autonomous balancing control using principle of inverted pedulum and it is also possible to arrive at destination. In this paper, state feedback controller designed by quadratic optimal control method is used. And quadratic optimal control uses state feedback control gain K to minimize performance index function J. Because it is easy to find gain, this control method can be used in the controller of two wheeled inverted pendulum robot. This proposed robot system is experimentally verified with following performances - balancing control, disturbance rejection, remote control, line following and obstacle avoidance.

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

DYNAMIC MODELING AND REACTION WHEEL CONTROLLER DESIGN FOR FLEXIBLE SATELLITE AOCS (유연모드를 가진 인공위성의 자세제어를 위한 동역학 모델링 및 반작용휠 제어기 설계)

  • 우병삼;채장수
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.386-394
    • /
    • 1997
  • In this study, a few of the modeling methods for flexible spacecraft were introduced and adopted to the modeling of a 3-axes stabilization satellite. The generated model was put into pre-built rigid body attitude control loop. A Lumped Parameter Model(Global Mode Model: GMM) was recommended for the absence of the Finite Element Method(FEM) model. Finally, GMM was compared with FEM in terms of designing a control filter. A 1st-order filter was designed to meet requirements of the controller since the new flexible model was applied, and that filter was added to motor controller and axis controller. MATLAB/Simulink was used as a tool for design and simulation of the control loop and filter.

  • PDF

Development of the Improved Dynamic Model of the Supercapacitor Considering Self-Discharge (자연방전을 고려한 개선된 슈퍼커패시터의 동특성 모델 개발)

  • Kim, Sang-Hyun;Lee, Kyo-Beum;Choi, Se-Wan;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.188-196
    • /
    • 2009
  • Due to its high power density, long cycle life and clean nature supercapacitors are widely used for improving the dynamic characteristics of the new and renewable energy sources and extending the battery run-time and life. In this paper improved dynamic model of the supercapacitor is developed by the electrochemical impedance spectroscopy technique. The developed model can be used to accurately estimate the dynamic behaviour of the supercapacitor and calculate the exact capacitance value at a certain state of charges. The model of the supercapacitor in the frequency domain is equivalently transformed into that in the time domain for Matlab/Simulink simulaton. The simulation data shows fine agreements with experimental results, thereby proving the validity and the accuracy of the developed model.

구속 받는 유연 매니퓨레이터의 병렬 위치/힘 제어

  • Kim, Jin-Soo;Uchiyama, Masaru
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • 본 논문에서는 환경에 구속 받는 유연 매니퓨레이터의 힘/위치에 대하여 논하고자 한다. 일반적으로, 유연 매니퓨레이터의 모델링 방법은 분포 정수 모델과 집중 정수 모델로 분류할 수 있다. 전자인 분포 정수 모델을 이용해서는 평면 1 링크, 2 링크를 대상으로 한 위치/힘 제어는 가능하나, 운동 방정식의 복잡성으로 인하여 실시간에서 다 링크 다 관절 유연 매니퓨레이터의 힘/위치를 제어하기는 어렵게 여겨져 왔다. 본 논문에서는 집중 정수 모델링 방법인 집중 스프링 질량 모델(Lumped Spring Mass Model)을 이용하여 환경에 구속받는 유연 매니퓨레이터의 운동 방정식을 산출했다 이 모델을 실험기인 유연 매니퓨레이터 ADAM(Aerospace Dual Arm Manipulators)에 적용하여 실시간 위치/힘 제어 실험을 행하였으며, MATLAB를 이용하여 해석했다. 또한, ADAMS$^{TM}$ FEM를 이용하여 분포 정수 모델을 도출하여, 해석하였으며, 이 결과와 집중 정수 모델을 이용한 MATLAB 해석의 결과, 그리고 실험 결과를 비교 분석하여 본 논문에서 제안한 구속받는 유연 매니퓨레이터의 집중 정수 모델 타당성을 입증시켰다.

  • PDF

Modeling Method of $3{\Phi}$ Phase-Controlled Rectifier in consideration of the overlap interval for DC Motor Drive (중첩구간을 고려한 DC 전동기 구동용 3상 위상제어 정류기의 모델링 기법)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2688-2690
    • /
    • 1999
  • This paper presents the modeling method of $3{\Phi}$ phase-controlled rectifier considering the overlap interval for the drive of DC motor in the Matlab environment. The model is constructed by the module-based method and therefore it is appropriate in the research of the closed-loop controlled power electronic system in the Matlab/Simulink environment. The model of SCR is used as the element for the power transformation. The simulation results show that the overlap interval from the effect of the input inductance is accurate.

  • PDF

A Low-Order Controller Design of Active Pantograph System (능동판토그래프의 저차제어기 설계)

  • Baek, Seung-Koo;Chang, Seok-Gahk;Kwon, Sung-Tae;Kim, Jin-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.940-945
    • /
    • 2009
  • This paper presents the design method of low order controller for the active pantograph of electric train system. The pantograph is the most playa role to supply constant current to the train. The design objectives are to have good tracking performance about reference contact force despite the stiffness variation that is like sinusoidal function concerned in train speed or span length of contact wire. In this paper, we consider stiffness variation from external disturbance of active pantograph to simplify model equation, and propose simple second-order controller which is designed by Characteristic ratio assignment(CRA) control method. Finally, we verify time response appling to model equation of real system and frequency response about parameter uncertainty like stiffness variation. it is performed by Matlab version 6.5 and Matlab simulink simulation.

  • PDF

Controller Performance Analysis of 3-level inverter STATCOM for balancing DC Link Voltage (3-레벨 인버터식 STATCOM의 상.하단 직류캐패시터의 전압평형유지를 위한 제어기 특성 분석)

  • 이준기;한병문;김성남
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.107-113
    • /
    • 2001
  • This paper describes dynamic performance analysis of a STATCOM based on 3-level inverter. Major attention is focused on the controller design for 3-level inverter, including regulator design for voltage sharing across the dc link capacitors. A detailed simulation model was developed with Matlab and a scaled hardware model was built and tested to verify the proposed approach. Both simulation and experimental results confirm that the developed controller can regulate the reactive power. The developed controller could be effectively applied to the actual hardware system for STATCOM.

  • PDF

Dynamic Analysis of Railway Vehicle Using Mathematical Modeling of High-Speed EMU (분산형 고속전철의 34자유도 동역학적 모델링을 통한 철도차량의 동적 특성 해석)

  • Lee, Rae-Min;Lee, Pil-Ho;Lee, Sang-Won;Koo, Ja-Choon;Choi, Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1426-1434
    • /
    • 2008
  • This paper addresses the numerical study on the dynamics of the High-speed EMU to enhance the ride quality. The 17 and 34 degrees-of-freedom (DOF) dynamic models for a single railway vehicle are proposed, and its vibrational characteristics according to the nonuniform rail profile are analyzed via Matlab. The validity of the proposed 34-DOF model are verified by comparing its dynamic characteristics and those from ADAMS/Rail. In addition, the critical dynamic parameters are identified by the parametric analysis, and rough design variables to reduce the vibration level of the railway vehicle are proposed. Finally, the frequency analysis - FFT - are conducted to extract the resonant frequencies, which have a significant influence on the determination of the critical speed of the railway vehicle. It is demonstrated that the results from the Matlab-based numerical analysis of the 34-DOF dynamic model are similar to those from ADAMS/Rail.

  • PDF