• 제목/요약/키워드: Matlab Simulation

검색결과 1,410건 처리시간 0.031초

Digitally Controlled Single-inductor Multiple-output Synchronous DC-DC Boost Converter with Smooth Loop Handover Using 55 nm Process

  • Hayder, Abbas Syed;Park, Young-Jun;Kim, SangYun;Pu, Young-Gun;Yoo, Sang-Sun;Yang, Youngoo;Lee, Minjae;Hwang, Keum Choel;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.821-834
    • /
    • 2017
  • This paper reports on a single-inductor multiple-output step-up converter with digital control. A systematic analog-to-digital-controller design is explained. The number of digital blocks in the feedback path of the proposed converter has been decreased. The simpler digital pulse-width modulation (DPWM) architecture is then utilized to reduce the power consumption. This architecture has several advantages because counters and a complex digital design are not required. An initially designed unit-delay cell is adopted recursively for the construction of coarse, intermediate, and fine delay blocks. A digital limiter is then designed to allow only useful code for the DPWM. The input voltage is 1.8 V, whereas output voltages are 2 V and 2.2 V. A co-simulation was also conducted utilizing PowerSim and Matlab/Simulink, whereby the 55 nm process was employed in the experimental results to evaluate the performance of the architecture.

Line Impedance Estimation Based Adaptive Droop Control Method for Parallel Inverters

  • Le, Phuong Minh;Pham, Xuan Hoa Thi;Nguyen, Huy Minh;Hoang, Duc Duy Vo;Nguyen, Tuyen Dinh;Vo, Dieu Ngoc
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.234-250
    • /
    • 2018
  • This paper presents a new load sharing control for use between paralleled three-phase inverters in an islanded microgrid based on the online line impedance estimation by the use of a Kalman filter. In this study, the mismatch of power sharing when the line impedance changes due to temperature, frequency, significant differences in line parameters and the requirements of the Plug-and-Play mode for inverters connected to a microgrid has been solved. In addition, this paper also presents a new droop control method working with the line impedance that is different from the traditional droop algorithm when the line impedance is assumed to be pure resistance or pure inductance. In this paper, the line impedance estimation for parallel inverters uses the minimum square method combined with a Kalman filter. In addition, the secondary control loops are designed to restore the voltage amplitude and frequency of a microgrid by using a combined nominal value SOGI-PLL with a generalized integral block and phase lock loop to monitor the exact voltage magnitude and frequency phase at the PCC. A control model has been simulated in Matlab/Simulink with three voltage source inverters connected in parallel for different ratios of power sharing. The simulation results demonstrate the accuracy of the proposed control method.

QPSK, MQAM, OFDM-QPSK, OFDM-MQAM 및 8-VSB 변조방식에 대한 위상잡음의 영향 (Effects on Phase Noise of QSPK, MQAM, OFDM-QPSK, OFDM-MQAM, and 8-VSB Modulations)

  • 권요안;김인석
    • 한국항행학회논문지
    • /
    • 제10권3호
    • /
    • pp.235-249
    • /
    • 2006
  • 본 논문에서는 디지털 통신 시스템의 국부발진기의 다양한 주파수 오프셋에서 QPSK(Quadrature Phase Shift Keying), MQAM(M-ary Quadrature Amplitude Modulation), OFDM(Orthogonal Frequency Division Multiplex)-MQAM, OFDM-QPSK, 8-VSB(Vestigial Side Bands) 변조방식에 대한 SER(Symbol Error Rate)의 변화와 위상잡음으로 인해 SER에 미치는 영향을 일반화하여 도출하고 시뮬레이션을 통하여 위상잡음이 없는 이상적인 경우와 비교하였다. 또한 상기 변조방식에 대하여 심벌레이트와 변조 대역폭간의 비 그리고 국부발진기의 다양한 오프셋에서도 SER을 분석하였다. 본 연구를 통하여 위상잡음에 대해 가장 민감한 변조방식은 OFDM-MQAM으로, 상대적으로 민감도가 가장 낮은 변조는 8-VSB임을 확인하였다.

  • PDF

연비 평가를 위한 6속 DCT기반 HEV 성능 시뮬레이터의 개발 (Development of Performance Simulator for 6-speed DCT-based Hybrid Electric Vehicle to Evaluate the Fuel Economy)

  • 백진주;이용관;박진현;한관수;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권4호
    • /
    • pp.1-6
    • /
    • 2013
  • With aggravation of environmental contamination and energy resource exhaustion, Hybrid Electric Vehicles (HEV) that can be economically operated with low fuel consumption are receiving greater attention. For performance improvement of such HEV, the development of efficient transmission can be seen as one of core technologies such as performance of components and driving strategy. Dual clutch transmission (DCT) is actively studied as a transmission type for HEV due to its advantages of having excellent power transmission efficiency based on manual transmission characteristic, resolving the problem of power interruption, and realizing driving convenience of automatic transmission (AT). In this paper, one diesel HEV equipped with 6-Speed DCT, modelled using MATLAB/Simulink, and a performance simulator developed for this vehicle are introduced. Driving simulation with driving cycles such as FTP75 and NYCC was performed using the developed performance simulator, and the simulated results regarding state of charge and fuel economy, when AT and DCT are applied to this diesel hybrid vehicle respectively, are compared. This performance simulator can be utilized to develop a control algorithm for improving the fuel economy of HEV with DCT.

Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures

  • Wong, K.L.;Chuan, M.W.;Chong, W.K.;Alias, N.E.;Hamzah, A.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.209-221
    • /
    • 2019
  • Graphene, with impressive electronic properties, have high potential in the microelectronic field. However, graphene itself is a zero bandgap material which is not suitable for digital logic gates and its application. Thus, much focus is on graphene nanoribbons (GNRs) that are narrow strips of graphene. During GNRs fabrication process, the occurrence of defects that ultimately change electronic properties of graphene is difficult to avoid. The modelling of GNRs with defects is crucial to study the non-idealities effects. In this work, nearest-neighbor tight-binding (TB) model for GNRs is presented with three main simplifying assumptions. They are utilization of basis function, Hamiltonian operator discretization and plane wave approximation. Two major edges of GNRs, armchair-edged GNRs (AGNRs) and zigzag-edged GNRs (ZGNRs) are explored. With single vacancy (SV) defects, the components within the Hamiltonian operator are transformed due to the disappearance of tight-binding energies around the missing carbon atoms in GNRs. The size of the lattices namely width and length are varied and studied. Non-equilibrium Green's function (NEGF) formalism is employed to obtain the electronics structure namely band structure and density of states (DOS) and all simulation is implemented in MATLAB. The band structure and DOS plot are then compared between pristine and defected GNRs under varying length and width of GNRs. It is revealed that there are clear distinctions between band structure, numerical DOS and Green's function DOS of pristine and defective GNRs.

Mathematical Model and Design Optimization of Reduction Gear for Electric Agricultural Vehicle

  • Pratama, Pandu Sandi;Byun, Jae-Young;Lee, Eun-Suk;Keefe, Dimas Harris Sean;Yang, Ji-Ung;Chung, Song-Won;Choi, Won-Sik
    • 한국산업융합학회 논문집
    • /
    • 제22권1호
    • /
    • pp.1-9
    • /
    • 2019
  • In electric agricultural machine the gearbox is used to increase torque and lower the output speed of the motor shaft. The gearbox consists of several shafts, helical gears and spur gears works in series. Optimization plays an important role in gear design as reducing the weight or volume of a gear set will increase its service life and improve the bearing capacity. In this paper the basic design parameters for gear like shaft diameter and face width are considered as the input variables. The bending stress and material volume is considered as the objective function. ANSYS was used to investigate the bending stress when the variable was changed. Artificial Neural Network (ANN) was used to obtain the mathematical model of the system based on the bending stress behaviour. The ANN was used since the output system is nonlinear. The Genetic Algorithm (GA) technique of optimization is used to obtain the optimized values of shaft diameter and face width on the pinion based on the ANN mathematical model and the results are compared as that obtained using the traditional method. The ANN and GA were performed using MATLAB. The simulation results were shown that the proposed algorithm was successfully calculated the value of shaft diameter and face width to obtain the minimal bending stress and material volume of the gearbox.

고분자전해질 연료전지에서 고분자막을 통한 물의 이동 (Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells)

  • 이대웅;황병찬;임대현;정회범;유승을;구영모;박권필
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.338-343
    • /
    • 2019
  • 고분자전해질 연료전지에서 전해질막의 물이동과 함수율은 고분자막의 성능에 많은 영향을 미친다. 본 연구에서는 간단한 방법에 의해 물이동에 관한 고분자막의 물성(전기삼투계수, 물 확산계수)을 측정하고 이들을 이용해 막을 통한 물의 이동량과 이온전도도를 모델식에 의해 모사한 후 실험값과 비교하였다. 물이동의 구동력은 전기삼투와 확산만이 라고 본 1차원 정상상태 지배방정식을 매트랩으로 수치해석하였다. $144{\mu}m$ 두께의 고분자막의 전기삼투계수를 수소펌핑셀에서 구한 결과 1.11을 얻었다. 물확산계수를 상대습도의 함수로 나타냈고 물확산에 대한 활성화에너지는 $2,889kJ/mol{\cdot}K$였다. 이들 계수를 적용해 모사한 물이동량과 이온전도도 결과는 실험값과 잘 일치함을 보였다.

고속 비행의 Lift-offset 복합형 헬리콥터 기체의 능동 진동 제어 시뮬레이션 (Active Airframe Vibration Control Simulations of Lift-offset Compound Helicopters in High-Speed Flights)

  • 홍성부;권영민;김지수;이유빈;박병현;신현철;박재상
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.357-367
    • /
    • 2021
  • This paper studies the simulations of active airframe vibration controls for the Sikorsky X2 helicopter with a lift-offset coaxial rotor. The 4P hub vibratory loads of the X2TD rotor are obtained from the previous work using a rotorcraft comprehensive analysis code, CAMRAD II. The finite element analysis software, MSC.NASTRAN, is used to model the structural dynamics of the X2TD airframe and to analyze the 4P vibration responses of the airframe. A simulation study using Active Vibration Control System(AVCS) with Fx-LMS algorithm to reduce the airframe vibrations is conducted. The present AVCS is modeled using MATLAB Simulink. When AVCS is applied to the X2TD airframe at 250 knots, the 4P longitudinal and vertical vibration responses at the specified airframe positions, such as the pilot seat, co-pilot seat, engine deck, and prop gearbox, are reduced by 30.65 ~ 94.12 %.

Comparison of classical and reliable controller performances for seismic response mitigation

  • Kavyashree, B.G.;Patil, Shantharama;Rao, Vidya S.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.353-364
    • /
    • 2021
  • Natural hazards like earthquakes, high winds, and tsunami are a threat all the time for multi-story structures. The environmental forces cannot be clogged but the structures can be prevented from these natural hazards by using protective systems. The structural control can be achieved by using protective systems like the passive, active, semi-active, and hybrid protective systems; but the semi-active protective system has gained importance because of its adaptability to the active systems and reliability of the passive systems. Therefore, a semi-active protective system for the earthquake forces has been adopted in this work. Magneto-Rheological (MR) damper is used in the structure as a semi-active protective system; which is connected to the current driver and proposed controller. The Proportional Integral Derivative (PID) controller and reliable PID controller are two proposed controllers, which will actuate the MR damper and the desired force is generated to mitigate the vibration of the structural response subjected to the earthquake. PID controller and reliable PID controller are designed and tuned using Ziegler-Nichols tuning technique along with the MR damper simulated in Simulink toolbox and MATLAB to obtain the reduced vibration in a three-story benchmark structure. The earthquake is considered to be uncertain; where the proposed control algorithm works well during the presence of earthquake; this paper considers robustness to provide satisfactory resilience against this uncertainty. In this work, two different earthquakes are considered like El-Centro and Northridge earthquakes for simulation with different controllers. In this paper performances of the structure with and without two controllers are compared and results are discussed.

Study on Equivalent Consumption Minimization Strategy Application in PTI-PTO Mode of Diesel-Electric Hybrid Propulsion System for Ships

  • Lee, Dae-Hong;Kim, Jong-Su;Yoon, Kyoung-Kuk;Hur, Jae-Jung
    • 해양환경안전학회지
    • /
    • 제28권3호
    • /
    • pp.451-458
    • /
    • 2022
  • In Korea, five major ports have been designated as sulfur oxide emission control areas to reduce air pollutant emissions, in accordance with Article 10 of the "Special Act on Port Air Quality" and Article 32 of the "Ship Pollution Prevention Regulations". As regulations against vessel-originated air pollutants (such as PM, CO2, NOx, and SOx) have been strengthened, the Ministry of Oceans and Fisheries(MOF) enacted rules that newly built public ships should adopt eco-friendly propulsion systems. However, particularly in diesel-electric hybrid propulsion systems,the demand for precise control schemes continues to grow as the fuel saving rate significantly varies depending on the control strategy applied. The conventional Power Take In-Power Take Off(PTI - PTO) mode control adopts a rule-based strategy, but this strategy is applied only in the low-load range and PTI mode; thus, an additional method is required to determine the optimal fuel consumption point. The proposed control method is designed to optimize fuel consumption by applying the equivalent consumption minimization strategy(ECMS) to the PTI - PTO mode by considering the characteristics of the specific fuel oil consumption(SFOC) of the engine in a diesel-electric hybrid propulsion system. To apply this method, a specific fishing vessel model operating on the Korean coast was selected to simulate the load operation environment of the ship. In this study, a 10.2% reduction was achieved in the MATLAB/SimDrive and SimElectric simulation by comparing the fuel consumption and CO2 emissions of the ship to which the conventional rule-based strategy was applied and that to which the ECMS was applied.