• 제목/요약/키워드: Matlab Simulation

검색결과 1,404건 처리시간 0.026초

Random Pulse Position PWM 방식을 적용한 IPMSM 기반 차세대 고속전철 구동 인버터 시스템의 고조파 저감 (Reducing Harmonics of the Next-generation High-speed Railway Inverter System by Random Pulse Position Modulation Technique based on Space Vector Modulation)

  • 이상현;진강환;김성제;노애숙;김윤호
    • 조명전기설비학회논문지
    • /
    • 제26권6호
    • /
    • pp.94-101
    • /
    • 2012
  • In this paper, The Next Generation High Speed Railway inverter system based on IPMSM drives using Random Pulse Position Modulation is proposed to reduce electromagnetic noise. To verify the validity of study, the simulator for the proposed system is designed and impplemented. Simulation program is developed using Matlab/Simulink. The simulation results of the proposed system was compared with the system using conventional method. The results show that the voltage and current harmonics of the proposed Next Generation High Speed Railway Inverter system. significantly decrease and spread into wide band area by the proposed Random Pulse Position modulation technique based on Space Vector Modulation method.

Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink

  • 노경수;최준호
    • 조명전기설비학회논문지
    • /
    • 제21권1호
    • /
    • pp.91-97
    • /
    • 2007
  • This paper presents a pitch angle controller of a grid-connected wind turbine system for extracting maximum power from wind and implements a modeling and simulation of the wind turbine system on MATLAB/Simulink. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, and power coefficient with wind speed when the wind turbine is operated under the maximum power control algorithm. The objective of pitch angle control is to extract maximum power from wind and is achieved by regulating the blade pitch angle during above-rated wind speeds in order to bypass excessive energy in the wind. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction during above-rated wind speeds and effectiveness of the proposed controller would be satisfactory.

Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cement-based composites

  • Huang, Jun;Huang, Peiyan
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.327-341
    • /
    • 2011
  • Three-dimensional graphic objects created by MATLAB are exported to the AUTOCAD program through the MATLAB handle functions. The imported SAT format files are used to produce the finite element mesh for MSC.PATRAN. Based on the Monte-Carlo random sample principle, the material heterogeneity of cement composites with randomly distributed fibers is described by the WEIBULL distribution function. In this paper, a concept called "soft region" including micro-defects, micro-voids, etc. is put forward for the simulation of crack propagation in fiber-reinforced cement composites. The performance of the numerical model is demonstrated by several examples involving crack initiation and growth in the composites under three-dimensional stress conditions: tensile loading; compressive loading and crack growth along a bimaterial interface.

최소차원 관측기를 이용한 평면 X-Y 스테이지의 나노 위치제어 (Nano Position Control of Plane X-Y Stage Using Minimum Order Observer)

  • 김재열;윤성운;곽이구;안재신;한재호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.180-185
    • /
    • 2003
  • Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modem control theory, dual servo algorithm is developed by minimum order observer, and stability priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF

영구자석 동기발전기와 회류수조를 이용한 조류발전 시스템의 특성 해석 (Analysis of the Characteristics of the Tidal Current Power Generation System Using PMSG and Water Tunnel)

  • 안원영;이석현;김근수;이강희;조철희
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.44-50
    • /
    • 2013
  • In order to analyze the characteristics of tidal current power generation system, we measured the output power according to the stream velocity by a water tunnel system and a simulation in MATLAB/Simulink. The water tunnel system consisted of impeller tidal flow transducer and PMSG with rotor in the water. The simulation consisted of PMSG, the tidal current turbine, and back-to-back converter. Also, we simulated the characteristics of output power according to the change of blade length and angular velocity.

가솔린 엔진/자동변속기 시스템의 객체지향형 모델 (An Object-Oriented Model for Gasoline Engine and Automatic Transmission Systems)

  • 양경진;홍금식;이교일
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.534-542
    • /
    • 1998
  • In this paper a simulation model for the powertrain control of gasoline engines with automatic transmission is presented. A modular programming approach has been pursued and the MATLAB/SIMULINK has been utilized as the programming environment. The engine/transmission system is analyzed in the object-oriented fashion whereby easy transferal of the modules, which represent physical parts or analysis subsystems, is guaranteed. Some mathematical models are adopted from the literature to compare the simulation results with the model and the experimental results in the literature. It is expected that the whole program or individual module constructed in this paper are useful for the automotive engineers in designing a new engine/transmission system and/or in modifying parts of existing systems.

  • PDF

TI ADC를 위한 시간 왜곡 교정 블록의 하드웨어 구현 (Hardware Implementation of Time Skew Calibration Block for Time Interleaved ADC)

  • 칸 사데크 레자;최광석
    • 디지털산업정보학회논문지
    • /
    • 제13권3호
    • /
    • pp.35-42
    • /
    • 2017
  • This paper presents hardware implementation of background timing-skew calibration technique for time-interleaved analog-to-digital converters (TI ADCs). The timing skew between any two adjacent analog-digital (A/D) channels is detected by using pure digital Finite Impulse Response (FIR) delay filter. This paper includes hardware architecture of the system, main units and small sub-blocks along with control logic circuits. Moreover, timing diagrams of logic simulations using ModelSim are provided and discussed for further understanding about simulations. Simulation process in MATLAB and Verilog is also included and provided with basic settings need to be done. For hardware implementation it not practical to work with all samples. Hence, the simulation is conducted on 512 TI ADC output samples which are stored in the buffer simultaneously and the correction arithmetic is done on those samples according to the time skew algorithm. Through the simulated results, we verified the implemented hardware is working well.

소형궤도차량 시스템에서 속도 프로파일 추종을 위한 제어시스템 구축에 관한 연구 (A Study on a Construction of Control System for the Tracking of a Speed Profile in the Personal Rapid Transit System)

  • 이준호;류상환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1069-1070
    • /
    • 2006
  • This study is concerned with the control system design using Labview Simulation Interface Toolkit and Matlab/simulink combined system for an application to the personal rapid transit system which has very short headway, requiring accurate speed control to avoid the impact between the vehicles. A simple equation of motion for a vehicle which is activated on the linear motor is introduced. A speed profile that should be tracked by a rear vehicle is produced based on the state information of the two vehicles(the preceding vehicle and the rear vehicle). The speed profile tracking control system is designed by Matlab/simulink. The simulation results show that the proposed control system is effective to evaluate the speed tracking performance.

  • PDF

PID 제어기를 이용한 쿼드로터 자세 안정화 (Quadrotor Attitude Stabilization by Using PID Controller)

  • 김용영;신준희;이선익;이형곤;임현민;김광진;이상철
    • 항공우주시스템공학회지
    • /
    • 제4권4호
    • /
    • pp.18-27
    • /
    • 2010
  • Quadrotor is an aircraft which is possible in Vertical Take-off and Landing(VTOL). This aircraft can not only be created as an Unmanned Aerial Vehicle(UAV), but also can be easily used in various fields because of its simplicity of construction. This study is mainly conducted with two main purposes. The first goal is designing the quadrotor focusing on the lightweight and protecting the airframe. The second purpose is stabilizing the quadrotor's attitude by using the PID controller. MATLAB simulation is performed for obtaining PID gain based on equations of motion. We used the compensation filter technique for the calibration of sensor data. PID gain has been drawn out based on the MATLAB simulation. The efficiency of the attitude control is improved by calibration of sensor data.

  • PDF

3-레벨 인버터식 STATCOM의 상.하단 직류캐패시터의 전압평형유지를 위한 제어기 특성 분석 (Controller Performance Analysis of 3-level inverter STATCOM for balancing DC Link Voltage)

  • 이준기;한병문;김성남
    • 전력전자학회논문지
    • /
    • 제6권1호
    • /
    • pp.107-113
    • /
    • 2001
  • 본 논문에서는 3-레벨 PWM 인버터식 STATCOM의 동특성 해석과 직류측 상.하단 캐패시터 전압의 분균등을 보상하기 위한 제어 시스템을 설계하여 시뮬레이션과 축소모형 실험에 의한 성능 해석에 관하여 기술하였다. STATCOM과 전력 계통을 등가회로로 표현하여 회로 방정식을 유도하고 수리모형을 도출하여 전체 회로의 동적 특성을 분석하고, 고안된 제어 시스템의 성능해석은 Marlab을 이용한 시뮬에리션과 축소모형 실험을 통해 검증하였는데, 검증결과 고안된 제어시스템은 무효전력 보상과 직류측 상.하단 캐패시터 전압의 불균등을 해소하는 우수한 성능을 갖는 것을 확인하였다.

  • PDF